The liquefaction and weakening of saturated sands under cyclic stress loading is a major concern in earthquake engineering. This study proposes a model based on initial cyclic shear strain (gamma c,i) to predict the excess pore pressure generation in undrained saturated sands. Here, gamma c,i is defined as the average cyclic shear strain prior to the significant accumulation of excess pore pressure. To calibrate and validate the model, a series of undrained stress-controlled cyclic triaxial (CTX) tests were conducted on Fujian sand with 10 % Kaolin clay (FS-10) and Silica sand no.7 with 5 % Kaolin clay (SS7-5). The FS-10 and SS7-5 specimens displayed typical flow liquefaction and cyclic mobility as they approached initial liquefaction. A critical excess pore pressure ratio (ru,c) is introduced to characterize the effects of liquefaction failure modes on excess pore pressure generation. The model also incorporates reduction factors related to small-strain secant shear modulus and reference shear strain to account for variations in calculating gamma c,i. Ultimately, the initial cyclic shear strain-based model exhibited a strong correlation with experimental data under different confining pressures and loading cycles. In addition, it provides a critical initial cyclic shear strain for assessing soil liquefaction in engineering practices, particularly for improved ground with complex stress states.
In this research, an energy formulation is proposed for the evaluation of pore pressure generation, incorporating the influence of the initial state of static stresses, both normal and shear, prior to cyclic loading. The proposed model focuses on obtaining a law of evolution of pore pressures under cyclic loading in saturated soils regardless of their susceptibility or not to liquefaction. The energy approach developed in this research extends previous energy based models developed for granular soils (susceptible to liquefaction and without initial static shear stress) incorporating: a) the integration in the formulation and interpretation of both the work dissipated and consumed during the dynamic process; b) the normalization of the formulation considering initial static stresses both normal and shear; c) obtaining and validating the model parameters with conventional tests of cyclic shearing equipment. The proposed model was validated with 116 cyclic simple shear tests under different in situ vertical effective stresses and different combinations of static and cyclic shear stresses. However, the model can be easily calibrated for other soils with cyclic simple shear tests without static shear stress, widely used in laboratories with dynamic equipment.
When loose, saturated sands and non-plastic silts are subjected to undrained cyclic loading, they will generate positive pore pressures. This increase in pore pressures leads to a decrease in effective stress with a corresponding decrease in shear strength and increase in liquefaction susceptibility. For combinations of sand and non-plastic silt, the threshold fines content can be defined as the non-plastic silt fines content at which the soil changes from sand-like behavior to silt-like behavior. Soils below the threshold fines content behave like sands and soils above the threshold fines content behave like silts. During cyclic triaxial and cyclic direct simple shear tests performed on specimens of sand and silt prepared to the same relative density but different fines contents, two rates of pore pressure generation were observed. When compared at five cycles of loading, soils with silt contents above the threshold fines content were found to produce pore pressure ratios as much as 50% higher than those observed for soils with silt contents below the threshold fines content. When evaluated in terms of cycles, cycle ratio, and dissipated energy ratio, the rate of pore pressure generation was found to be more rapid for soils above the threshold fines content than for soils below the threshold fines content.
The amount of energy dissipated in the soil during cyclic loading controls the amount of pore pressure generated under that loading. Because of this, the normalized dissipated energy per unit volume is the basis for both pore pressure generation models and energy-based liquefaction analyses. The pattern of energy dissipation in the soil in load-controlled cyclic triaxial and load-controlled cyclic direct simple shear tests and displacement-controlled cyclic triaxial and displacement-controlled cyclic direct simple shear tests is quite different. As a result, the pattern of pore pressure generation associated with load-controlled tests is markedly different from that in displacement-controlled tests. Pore pressure generation patterns for each of the four test types were proposed based upon the manner in which the load was applied during the test and the soil's response to that loading. The results of four tests, two load controlled and two displacement controlled, were then used to verify these patterns. Pore pressure generation rates in load-controlled and displacement-controlled tests are different when plotted against their cycle ratios. Conversely, the tests produce nearly identical patterns when plotted against energy dissipation ratio. This occurs because of the relationship between energy dissipation ratio and pore pressure generation is independent of the loading pattern.
The factors that influence dissipated energy and pore pressure generation patterns with respect to the cycle ratio and dissipated energy ratio were analyzed using the results of cyclic triaxial and cyclic direct simple shear tests. These analyses revealed several interesting differences in pore pressure generation patterns when related to cycle ratio than to dissipated energy ratio. Soils with different pore pressure generation patterns when plotted against the cycle ratio were found to have nearly identical pore pressure generation patterns when plotted against the dissipated energy ratio. The differences exist as the result of the fundamental differences between cycle ratio and dissipated energy ratio. The fundamental difference is that pore pressure generation is directly linked to the process of energy dissipation; it is not inherently linked to cycles of loading. Therefore, to achieve an understanding of the pore pressure response of a soil that is independent of the specifics of the applied loading, one needs to evaluate it in terms of energy dissipation, not in terms of cycles of loading, especially irregular loadings.