The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.
Rwanda, in eastern tropical Africa, is a small, densely populated country where climatic disasters are often the cause of considerable damage and deaths. Landslides are among the most frequent hazards, linked to the country's peculiar configuration including high relief with steep slopes, humid tropical climate with heavy rainfall, intense deforestation over the past 60 years, and extensive use of the soil for agriculture. The Karongi region, in the west-central part of the country, was affected by an exceptional cluster of more than 700 landslides during a single night (6-7 May 2018) over an area of 100 km2. We analyse the causes of this spectacular event based on field geological and geomorphology investigation and CHIRPS and ERA5-Land climate data. We demonstrate that (1) the notably steep slopes favoured soil instability; (2) the layered soil and especially the gravelly, porous C horizon allowed water storage and served as a detachment level for the landslides; (3) relatively low intensity, almost continuous rainfall over the previous two months lead to soil water-logging; and (4) acoustic waves from thunder or mechanical shaking by strong wind destabilized the water-logged soil through thixotropy triggering the landslides. This analysis should serve as a guide for forecasting landslide-triggering conditions in Rwanda.
A study was conducted in the mountains of Magoebaskloof, Limpopo Province, where oak trees grow along the banks of the Broederstroom River. This study revealed that 22 nematode genera were associated with oak trees (Quercus robur). The most frequently occurring nematodes were Aphelenchus sp. (100%) and Plectus sp. (100%), followed by Helicotylenchus sp. (90%). This study examined the relationship between nematodes and the physicochemical properties of the soil using Pearson correlation. It uncovered that the organic matter content (OMC) had a negative correlation with the number of Panagrolaimus sp. (r = -0.770) and Hemicycliophora sp. (r = -0.674). Conversely, the sand percentage positively correlated (r = 0.695) with the number of Hemicycliophora sp. The clay content of the soil showed a positive correlation (r = 0.617) with the number of Ditylenchus. Soil pH demonstrated a significant negative correlation with Acrobeloides sp. (r = -0.877). The canonical correspondence analysis (CCA) explained 63.3% of the relationship between nematodes and soil physicochemical properties. The CCA results indicated that Ditylenchus exhibited a positive correlation with OMC, while the Panagrolaimus and Hemicycliophora species showed a negative correlation with OMC. The results indicated that none of the soil sample sites were under stress. The soil food web analysis revealed that most soil samples were nutrient-enriched with a low C/N ratio. In conclusion, this study revealed that oak trees harbor a high diversity of plant-parasitic and free-living nematodes. The results suggest that soil nematodes, particularly free-living bacterivores, such as Panagrolaimus, can indicate organic matter content in the soil.
Fall armyworm (FAW), Spodoptera frugiperda, has posed a serious threat to global food security since its discovery in Africa in 2016. Intercropping peanuts with maize is a very common cultivation practice, which can result in a high possibility of peanut damage by FAW. Our study investigated the feeding behavior, plant part preferences, and damage symptoms of FAW larvae on peanuts throughout the larval period, considering changes in population densities and the passage of time over the number of investigations. The results indicated that FAW larvae frequently inhabited peanut leaves, particularly the undersides of the leaves. Larvae moved from the leaves to the soil in the seedling pot to complete development. Furthermore, FAW larvae tended to feed on peanut leaves rather than stems regardless of population densities. Based on the damage symptoms, the feeding preferences of FAW larvae tended to be heart leaves, followed by mature leaves and stems. The most frequent damage symptoms caused by FAW to peanuts were window panes, followed by leafless. This study provides a reference for the integrated management of FAW in peanut fields.