共检索到 3

Ice-wedge polygon troughs play an important role in controlling the hydrology of low-relief polygonal tundra regions. Lateral surface flow is confined to troughs only, but it is often neglected in model projections of permafrost thermal hydrology. Recent field and modeling studies have shown that, after rain events, increases in trough water levels are significantly more than the observed precipitation, highlighting the role of lateral surface flow in the polygonal tundra. Therefore, understanding how trough lateral surface flow can influence polygonal tundra thermal hydrology is important, especially under projected changes in temperatures and rainfall in the Arctic regions. Using an integrated cryohydrology model, this study presents plotscale end-of-century projections of ice-wedge polygon water budget components and active layer thickness with and without trough lateral surface flow under the Representative Concentration Pathway 8.5 scenario. Trough lateral surface flow is incorporated through a newly developed empirical model, evaluated against field measurements. The numerical scenario that includes trough lateral surface flow simulates discharge (outflow from a polygon) and recharge (rain-induced inflow to a polygon trough from upslope areas), while the scenario that does not include trough lateral surface flow ignores recharge. The results show considerable reduction (about 100-150%) in evapotranspiration and discharge in rainy years in the scenarios ignoring trough lateral surface flow, but less effect on soil water storage, in comparison with the scenario with trough lateral surface flow. In addition, the results demonstrate long-term changes (similar to 10-15 cm increase) in active layer thickness when trough lateral surface flow is modeled. This study highlights the importance of including lateral surface flow processes to better understand the long-term thermal and hydrological changes in low-relief polygonal tundra regions under a changing climate.

期刊论文 2022-07-01 DOI: 10.1002/ppp.2145 ISSN: 1045-6740

The currently observed climate warming will lead to widespread degradation of near-surface permafrost, which may release substantial amounts of inorganic nitrogen (N) into arctic ecosystems. We studied 11 soil profiles at three different sites in arctic eastern Siberia to assess the amount of inorganic N stored in arctic permafrost soils. We modelled the potential thickening of the active layer for these sites using the CryoGrid2 permafrost model and representative concentration pathways (RCPs) 4.5 (a stabilisation scenario) and 8.5 (a business as usual emission scenario, with increasing carbon emissions). The modelled increases in active-layer thickness (ALT) were used to estimate potential annual liberation of inorganic N from permafrost soils during the course of climate change. We observed significant stores of inorganic ammonium in permafrost, up to 40-fold higher than in the active layer. The modelled increase in ALT under the RCP8.5 scenario can result in substantial liberation of N, reaching values up to the order of magnitude of annual fixation of atmospheric N in arctic soils. However, the thaw-induced liberation of N represents only a small flux in comparison with the overall ecosystem N cycling. Copyright (c) 2017 John Wiley & Sons, Ltd.

期刊论文 2017-10-01 DOI: 10.1002/ppp.1958 ISSN: 1045-6740

The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30x30m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our similar to 1800km(2) study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6)gC-CO(2)day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6)gC-CO(2)day(-1)) and CH4 flux at 28.9 10(6)gC-CH(4)day(-1)(uncertainty using 95% CI is between 12.9 and 44.9 10(6)gC-CH(4)day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6)gC-CO(2)day(-1)) and CH4 flux (2.8 10(6)gC-CH(4)day(-1)) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.

期刊论文 2015-04-01 DOI: 10.1111/gcb.12757 ISSN: 1354-1013
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页