共检索到 2

Traditional soil stabilization methods, including cement and chemical grouting, are energy-intensive and environmentally harmful. Microbial-induced carbonate precipitation (MICP) technology offers a sustainable alternative by utilizing microorganisms to precipitate calcium carbonate, binding soil particles to improve mechanical properties. However, the application of MICP technology in soil stabilization still faces certain challenges. First, the mineralization efficiency of microorganisms needs to be improved to optimize the uniformity and stability of carbonate precipitation, thereby enhancing the effectiveness of soil stabilization. Second, MICP-treated soil generally exhibits high fracture brittleness, which may limit its practical engineering applications. Therefore, improving microbial mineralization efficiency and enhancing the ductility and overall integrity of stabilized soil remain key issues that need to be addressed for the broader application of MICP technology. This study addresses these challenges by optimizing microbial culture conditions and incorporating polyethylene fiber reinforcement. The experiments utilized sandy soil and polyethylene fibers, with Bacillus pasteurii as the microbial strain. The overall experimental process included microbial cultivation, specimen solidification, and performance testing. Optimization experiments for microbial culture conditions indicated that the optimal urea concentration was 0.5 mol/L and the optimal pH was 9, significantly enhancing microbial growth and urease activity, thereby improving calcium carbonate production efficiency. Specimens with different fiber contents (0% to 1%) were prepared using a stepwise intermittent grouting technique to form cylindrical samples. Performance test results indicated that at a fiber content of 0.6%, the unconfined compressive strength (UCS) increased by 80%, while at a fiber content of 0.4%, the permeability coefficient reached its minimum value (5.83 x 10-5 cm/s). Furthermore, microscopic analyses, including X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), revealed the synergistic effect between calcite precipitation and fiber reinforcement. The combined use of MICP and fiber reinforcement presents an eco-friendly and efficient strategy for soil stabilization, with significant potential for geotechnical engineering applications.

期刊论文 2025-03-31 DOI: 10.3390/su17073101

Engineered cementitious composites (ECC), which are a kind of novel composite building material with high ductility and high toughness, can be utilized in areas susceptible to salt-freezing damage, such as that caused by snowmelt agents, seawater, and saline soils. In this paper, engineered cementitious composites reinforced with polyethylene fibers (PE) are analyzed to study the changes in the flexural static load properties, and flexural fatigue life of PE-ECC specimens after four different freeze-thaw cycles (0, 50, 100 and 150) in fresh water and a 3.5 % mass fraction NaCl solution. The results show that upon reaching 150 freeze-thaw cycles, there was a notable disparity in the relative equivalent flexural strength between specimens subjected to chloride salt freeze-thaw and freshwater freeze-thaw environments, with the former exhibiting a 1.07-fold increase in damage compared to the latter specimens. Using the relative dynamic elastic modulus as the damage variable, a relationship model was made between the relative equivalent flexural strength and the freeze-thaw damage degree of PE-ECC in two freeze-thaw environments. The flexural fatigue life of PE-ECC after freeze-thaw obeyed a two-parameter Weibull distribution, and the P-S-N curves at various reliability probabilities correlated well with the test results. The safety coefficient of PE-ECC varied with changes in freeze-thaw conditions, necessitating an increase in the safety coefficient to assure structural safety in locations with more severe freeze-thaw damage. The results of this study can serve as a reference for the development of freeze-thaw-resistant designs for PE-ECC structures in future applications.

期刊论文 2024-07-01 DOI: 10.1016/j.cscm.2023.e02726 ISSN: 2214-5095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页