Aerosols emitted from biomass burning affect human health and climate, both regionally and globally. The magnitude of these impacts is altered by the biomass burning plume injection height (BB-PIH). However, these alterations are not well-understood on a global scale. We present the novel implementation of BB-PIH in global simulations with an atmospheric chemistry model (GEOS-Chem) coupled with detailed TwO-Moment Aerosol Sectional (TOMAS) microphysics. We conduct BB-PIH simulations under three scenarios: (a) All smoke is well-mixed into the boundary layer, and (b) and (c) smoke injection height is based on Global Fire Assimilation System (GFAS) plume heights. Elevating BB-PIH increases the simulated global-mean aerosol optical depth (10%) despite a global-mean decrease (1%) in near-surface PM2.5. Increasing the tropospheric column mass yields enhanced cooling by the global-mean clear-sky biomass burning direct radiative effect. However, increasing BB-PIH places more smoke above clouds in some regions; thus, the all-sky biomass burning direct radiative effect has weaker cooling in these regions as a result of increasing the BB-PIH. Elevating the BB-PIH increases the simulated global-mean cloud condensation nuclei concentrations at low-cloud altitudes, strengthening the global-mean cooling of the biomass burning aerosol indirect effect with a more than doubling over marine areas. Elevating BB-PIH also generally improves model agreement with the satellite-retrieved total and smoke extinction coefficient profiles. Our 2-year global simulations with new BB-PIH capability enable understanding of the global-scale impacts of BB-PIH modeling on simulated air-quality and radiative effects, going beyond the current understanding limited to specific biomass burning regions and seasons. Plain Language Summary Biomass burning includes wildfires, prescribed burns, and agricultural burns; and is an important source of aerosol particles in the atmosphere. These aerosol particles are important for climate and human health. Our work contributes to understanding the global and interannual impacts of changing the height of these particles in the atmosphere. We ran multiple global atmospheric chemistry model simulations with each simulation having different heights for aerosol particles from biomass burning. Simulations with a higher average emission height had more smoke aerosol particles in the entire atmosphere, resulting in an increase in the cooling radiative impact of biomass burning compared to simulations with a lower average emission height. We found that simulations with a higher average emission height for biomass burning aerosols had slightly better agreement with satellite observations relative to lower heights. This study shows the importance of biomass burning aerosol emission height on Earth's global air quality and climate.
Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System's Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.