Most natural soils exhibit a certain degree of soil structure which, in general, leads to increased strength and stiffness properties. However, the mechanical characterization of these soils based on conventional laboratory testing proves difficult in many cases due to sample disturbance. The present work aims to characterize the microstructure of a postglacial, normally consolidated, fine-grained deposit in Seekirchen, Austria, adopting in situ testing, laboratory testing on high-quality samples, and numerical analysis. The latter involves recalculating in situ piezocone penetration tests (CPTu) using an advanced constitutive model for structured soil. In contrast to existing in situ interpretation methods, the results of the numerical study, the mineralogical and hydrochemical testing, as well as the oedometer and bender element testing on undisturbed and reconstituted samples suggest that the soil is characterized by a significant amount of structure. It is demonstrated that the difference in shear wave velocity measured in situ and through bender element testing on reconstituted samples can be used as an indicator for soil structure. Ignoring the effects of structure may lead to inaccurate parameter determination for advanced constitutive models, which are subsequently employed to solve complex boundary value problems in geotechnical practice. As a consequence, the prediction of expected displacement may not be reliable.
The overconsolidation ratio considerably affects the physical and mechanical properties of soil as well as the interaction between structures and soil. Scale and consolidation time limitations render the preparation of overconsolidated soil for small-scale model tests difficult. Therefore, studying structure-soil interactions, especially the vertical bearing capacity of pile foundations in overconsolidated soil becomes challenging. Given the importance of reliable overconsolidated soil in physical model tests for studying soil-structure interactions, this study, based on the fundamental of the overconsolidation ratio, established a reliable method for preparing overconsolidated soil by altering centrifuge acceleration. Piezocone penetration tests were conducted to validate the accuracy of this method. Furthermore, vertical bearing capacity of pile foundations was evaluated in various overconsolidated soils. The vertical ultimate bearing capacity of pile foundations, cone penetration resistance, pore water pressure, and sleeve friction resistance were obtained in soils with various overconsolidation ratios. Based on the results of both tests, a formula was developed to calculate the vertical ultimate bearing capacity of pile foundations, taking into account the overconsolidation ratio of soil. This proposed method for evaluating vertical bearing capacity of pile foundations in overconsolidated soil can also be applied to study interactions between other marine structures and soil. The results of the study can provide technical support for designing the foundations of offshore oil and gas facilities, wind power, and other structures.
In the reconstruction and expansion of expressways in soft soil areas, controlling the differential settlement between the new and existing subgrades is of vital importance. To investigate the settlement and deformation characteristics of both the new and existing subgrades, piezocone penetration test (CPTU) and dissipation tests were conducted on these subgrades. The CPTU dissipation data was utilized to determine the soil's degree of consolidation, and settlement calculations for the new and existing road subgrades were based on the CPTU test results. Subsequently, a finite element model was developed using the CPTU test findings to analyze the horizontal displacements, vertical settlements, and differential settlements of the new and existing subgrades before and after the reconstruction and expansion. Based on the measured settlement results, the new and old subgrade settlement calculation results are verified. The outcomes revealed that the degree of consolidation for the existing road subgrade of the Lianhuai Expressway ranged between 42 % and 96 %. The maximum horizontal displacement of the subgrade pre- and post-expansion occurred at the slope toe. Before expansion, the maximum vertical settlement was observed along the road's centerline, while after expansion, it was located in the centerline of the widened section. The maximum additional settlement amounted to 274.77 mm. During the new road construction phase, the differential settlement between the new and existing road subgrades increased rapidly over time, peaking at its maximum value. However, during the operational phase of the new road, this differential settlement tapered off as time progressed.
CPTu (piezocone penetration test) is widely used in engineering practice to determine various parameters of clays under partially drained conditions. However, most existing research is based on undrained or fully drained conditions for clays, leading to underestimation or overestimation of soil strength. By applying the Eulerian-Lagrangian large deformation finite element method to analyse the water-soil interaction, the CPTu driving mechanism in offshore saturated soft clays under different drainage conditions is revealed. An advanced hypoplastic constitutive model for clays is used to simulate the nonlinear behaviour of kaolin under different drainage conditions. The generation, accumulation, and dissipation of excess pore water pressure under different drainage conditions are analysed, as well as the influence of excess pore water pressure on cone tip resistance and the effective stress of the soil during the CPTu penetration process.