We review the progress of research on permafrost and periglacial dynamics over the last two decades and explore future periglacial landscapes in Svalbard, High Arctic. This area has been subjected to rapid air and ground warming at a rate of 0.10.2 degrees C yr-1, as well as simultaneous thawing of the top layer of permafrost at a rate of about 1 cm yr-1 over the last two decades. Periglacial features studied include ice-wedge polygons, mudboils, sorted patterned ground, pingos, solifluction lobes, active-layer detachment slides, and rock glaciers. These landforms are concentrated within narrow alluvial plains and valley-side slopes but separated by geomorphological specifics and ground materials. Decadal-scale monitoring highlights climatic control of the morphology and dynamics of three landforms & horbar;ice-wedge polygons, mudboils, and rock glaciers & horbar;and the impact of long-term warming on their dynamics. Despite the location close to the southern limit of continuous permafrost, multiple cold spells in mid-winter activate thermal contraction cracking, which permits the growth of ice wedges. If such cold spells continue under a warmer climate, ice wedge could still grow below the deepening active layer. In a mudboil-small polygon landscape, seasonal frost heaving (or thaw settlement) of the central mound is coupled with closing (or opening) of the marginal crack. This movement would be maintained under a warmer climate and at a deeper active layer if the active layer is kept very humid. Although the contemporary cold climate is generally unfavorable for the growth of well-developed rock glaciers in Svalbard, slow permafrost creep at a rate of a few centimeters per year produces basal bulging of the valley-side talus slopes. The warming trend in the last decade has led to a steady acceleration of the movement. Further warming in the near future is expected to develop longer valley-side rock glaciers.
Anthropogenic climate change threatens water storage and supply in the periglacial critical zone. Rock glaciers are widely distributed alpine aquifers with slower response to temperature increases, that provide the summer water flow of many alpine streams. Knowing the extent and makeup of rock glaciers is necessary to evaluate their potential for water supply. We used non-invasive methods, integrating geological, geomorphological, meteoro-logical, and geophysical information to characterize the internal structure and hydrology of the Upper Camp Bird rock glacier (UCBRG) located on level 3 of Camp Bird Mine in Ouray, Colorado, and assessed the applicability of two electromagnetic induction systems in this highly heterogeneous landform with a history of anthropogenic activity. The time-domain (G-TEMTM) system achieved deep subsurface penetration (similar to 100 m) and realistic modeling of the internal structure of the UCBRG: a shell of volcanic rock fragments (< 3 m thick; 1-100 Ohm-m), a meltwater component (10(2)-10(3) Ohm-m), located between 50 and 100 m near the toe (subpermafrost flow), and 1-30 m in the soundings farthest from the toe (suprapermafrost flow within the active layer), and a frozen component (permafrost 50-80 m thick; 10(3)-10(6) Ohm-m). The frequency-domain system, however, was highly susceptible to local environmental conditions, including anthropogenic objects (i.e., mine carts, lamp posts, tunnel tracks, etc.) and was unable to resolve UCBRG's internal makeup. The non-invasive methodology and general conceptual framework presented here can be used to characterize other alpine aquifers, contributing to the quantification of global water resources, and highlighting the importance of preserving rock glaciers as storage for critical water supply in the future.
The state of the cryosphere in tropical regions is of great importance because the temperature around the glaciers, permafrost and snow cover always fluctuates near the melting point. These thermal conditions and their high sensitivity to climate change cause the accelerated disappearance of these elements; therefore, it is important to know the climatic factors that regulate them, as well as the physical characteristics of each cryospheric element. Unlike glaciers, permafrost and snow cover have not been widely studied. In recent decades, the study of the glacial and periglacial environment has been carried out in intertropical mountains. However, despite the altitude of their relief and the frequent occurrence of snowfall in tropical high mountains, the conditions that determine such events have been barely analyzed; and in the case of Mexico, the volume of snowfall and its thickness have not been quantified either, as well as their corresponding duration. Consequently, this work is aimed to analyze the temperature and precipitation conditions that determine the snowfall at the higher part of the Nevado de Toluca volcano; at the same time, the conditions of the cryotic climate and their possible implication on the surface are studied. The analysis of data from 1965 to 2016, using frequency statistics, allowed to realize that snowfall occurs with low intensity, its accumulation being less than 10 cm thick and 10 mm of snow water equivalent, which causes the snowpack to stay only a few weeks on average. At the same time, it was determined that there is a significant increase in the number of freeze-thaw cycles. Therefore, due to the climate conditions and their influence on the mountain surface, it is probable that the bedrock is subject to a greater gelifraction dynamics, and the unconsolidated soil surface increases; the combination of the above could cause a greater geomorphological dynamic over time, particularly due to debris flows, and by water and wind erosion of the surface. This work is intended to serve as a reference for the high mountain environment in the intertropical regions.
Arctic slope hydrology studies suggest that water follows preferential subsurface flow paths known as water tracks. While subsurface flow is usually expected to transport only dissolved solids, periglacial studies have indicated some evidence of lessivage associated with flow through sorted patterned ground. We investigated the transport of dissolved and suspended sediments in water tracks on a polar desert slope, and linked this transport to slope and flow path geomorphology. Solute transfer was dominated by carbonate weathering products, and concentrations of other ions increased disproportionately when the active layer thawed. Suspended sediment transport occurred in water tracks, but fluxes were supply-limited, indicating competent subsurface mechanical erosion. Solute mass fluxes were 5-10 times greater than sediment fluxes. In this dry landscape dominated by snowmelt, surface seepage leads to sediment deposition, while subsurface flow promotes lessivage. A conceptual model of nivation slopes is presented, taking into consideration the influence of flow path morphology and adaptation of the hydrological system to localized water sources from wind-drifted snowbanks. Climate-driven permafrost degradation and the increased frequency of rainfall events may result in new sediment sources and changes in flow pathways, modifying the physico-chemical properties and ecology of downstream receiving waters.
Recent accounts suggest that periglacial processes are unimportant for large-scale landscape evolution and that true large-scale periglacial landscapes are rare or non-existent. The lack of a large-scale topographical fingerprint due to periglacial processes may be considered of little relevance, as linear process-landscape development relationships rarely can be substantiated. Instead, periglacial landscapes may be classified in terms of specific landform associations. We propose cryo-conditioning, defined as the interaction of cryotic surface and subsurface thermal regimes and geomorphic processes, as an overarching concept linking landform and landscape evolution in cold regions. By focusing on the controls on processes, this concept circumvents scaling problems in interpreting long-term landscape evolution derived from short-term processes. It also contributes to an unambiguous conceptualization of periglacial geomorphology. We propose that the development of several key elements in the Norwegian geomorphic landscape can be explained in terms of cryo-conditioning. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved.