The overconsolidation ratio (OCR) is a critical factor in determining the mechanical behaviour of overconsolidated clays. On the basis of the three requirements for the peak strength line, a continuous and smooth peak strength line is constructed from the perspective of the peak stress ratio, and then a new yield function for overconsolidated clays is developed. The developed yield function in the stress space is characterized by an elliptical curve. The evolution of the developed yield function in the stress space is captured by a new hardening parameter, which is constructed by integrating the proposed peak strength surface with the subloading surface concept. By combining the developed yield function with the non-orthogonal plastic flow rule, a non-orthogonal elastoplastic constitutive model of overconsolidated clays is established to consider the influence of the OCR on strength and deformation. The proposed model requires seven material parameters, all of which have a clear physical meaning and can be easily determined via conventional laboratory tests. Three typical stress paths are employed to demonstrate the essential features of the proposed model. The effectiveness of the proposed model is confirmed by comparing the experimental data with corresponding model predictions.
Gap-graded soils, extensively utilized in geotechnical and hydraulic engineering, exhibit diverse strength characteristics governed by their distinctive particle size distribution (PSD). To investigate the influence of PSD on the shear strength of gap-graded soils, this study utilizes the Discrete Element Method (DEM) to reproduce drained conventional triaxial tests of gap-graded soils across a wide range of fine particle content (FC = 1-40%) and particle size ratio (SR = 2.5-6.0). The simulation results reveal that the peak shear strength follows a characteristic unimodal curve versus FC, attaining its maximum value at about FC = 25%. SR governs peak strength through critical FC thresholds: negligible impact at FC < 10%, whereas significant enhancement occurs at FC = 25%. Micromechanical analysis reveals that branch anisotropy evolution controls strength behaviour. Shear strength inversely correlates with peak branch anisotropy as reduced branch anisotropy promotes homogenized contact force distribution. FC and SR collectively regulate macroscopic strength through coupled control of branch anisotropy evolution, where their synergistic interaction governs force chain reorganization and stress distribution homogeneity. Based on these insights, a novel predictive formula for peak strength incorporating both SR and FC were proposed, providing guidance for optimized deployment of gap-graded soils in engineering practice.
The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3 degrees C. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.