The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.
Plant-parasitic nematodes pose a silent yet devastating threat to global agriculture, causing significant yield losses and economic damage. Traditional detection methods such as soil sampling, microscopy, and molecular diagnostics are slow, labor-intensive, and often ineffective in early-stage infestations. Nano biosensors: cuttingedge analytical tools that leverage nanomaterials like carbon nanotubes, graphene, and quantum dots to detect nematode-specific biochemical markers such as volatile organic compounds (VOCs) and oesophageal gland secretions, with unprecedented speed and accuracy. The real breakthrough lies in the fusion of artificial intelligence (AI) and nano-biosensor technology, forging a new frontier in precision agriculture. By integrating AI's powerful data analysis, pattern recognition, and predictive capabilities with the extraordinary sensitivity and specificity of nano-biosensors, it becomes possible to detect biomolecular changes in real-time, even at the earliest stages of disease progression. AI-driven nano biosensors can analyze real-time data, enhance detection precision, and provide actionable insights for farmers, enabling proactive and targeted pest management. This synergy revolutionizes nematode monitoring, paving the way for smarter, more sustainable agricultural practices. This review explores the transformative potential of AI-powered nano-biosensors in advancing precision agriculture. By integrating these technologies with smart farming systems, we move closer to real-time, costeffective, and field-deployable solutions, ushering in a new era of high-tech, eco-friendly crop protection.
Root-lesion nematodes, particularly Pratylenchus neglectus and P. crenatus (PNC), are widely distributed in New Zealand and cause significant damage to maize roots, reducing crop productivity. Despite their economic importance, no comprehensive assessment of commercial maize hybrids' resistance to PNC has been conducted in the country. Significant variation was observed in the nematode reproduction factor (Rf) and final population (Pf) among hybrids. In Experiment 1 (initial population (Pi) = 1250 PNC kg(-)(1) soil), Rf ranged from 3.1 in hybrid P8500 to 7.1 in hybrid P9127, with Pf values ranging from 3863 to 8903 PNC kg(-)(1) soil + roots in 45 days. In Experiment 2 (Pi = 750 PNC kg(-)(1) soil), Rf ranged from 18.4 in hybrid P1613 to 37.5 in hybrid P8805, with Pf values from 13,784 to 28,426 PNC kg(-)(1) soil + roots in 60 days. These results indicate active nematode reproduction and substantial hybrid-dependent variation in host response. Experiment 3 examined the impact of varying initial inoculum densities (500, 1000 and 1500 PNC kg(-)(1) soil), showing a dose-dependent increase in Pf and corresponding root damage. Susceptible hybrid (P9127) exhibited up to 42% root dry weight and 22% shoot dry weight reductions. This study is the first systematic evaluation of PNC resistance in New Zealand maize hybrids. It identifies P9127 and P8805 as highly susceptible, and P0891, P8500, and P1613 as moderately resistant. These findings offer valuable benchmarks for future breeding and support nematode management in New Zealand.
Crops produced using the practice of continuous cropping can become seriously damaged by plant-parasitic nematodes, an important indicator of continuous cropping obstacles. As a typical and important perennial economic crop, dragon fruit is prone to serious plant-parasitic nematode infestation; however, whether it encounters continuous cropping obstacles remains unclear. Here, we studied plant-parasitic nematodes (Meloidogyne spp. and Tylenchorhynchus sp.) in the soil and roots, soil nematode communities, metabolic footprint, soil integrated fertility, and the yield of intensively planted dragon fruit under non-continuous cropping (Y1) and 3 years (Y3) and 5 years (Y5) of continuous cropping, to determine potential continuous-cropping obstacles and factors that affect the yield of this fruit. The largest numbers of plant-parasitic nematodes in the soil and roots were observed in Y5; the associated yield was reduced, and the dragon fruit was severely stressed. Further analysis of the composition, diversity, and ecological function indices of soil nematodes showed that the soil ecological environment deteriorated after 3 years of continuous cropping, with Y5 having the worst results. Similarly, the soil at Y5 had a significant inhibitory effect on the growth and reproduction of Caenorhabditis elegans. Mantel test analysis and a random forest model showed that soil available phosphorus, soil exchange calcium, and soil nematode abundance and diversity were related significantly to yield. Partial least squares path modeling revealed that soil fertility and soil nematode diversity directly impacts the yield of continuously cropped dragon fruit. In summary, continuous cropping obstacles occurred in Y5 of intensive dragon fruit cultivation, with soil nematode diversity and soil fertility determining the crop's yield.
The importance of green areas in today's modern city concept is increasing day by day. In this understanding, the use of turfgrass [e.g. Bentgrass (Agrostis spp. L.); Kentucky Bluegrass (Poa pratensis L.); Common Bermudagrass Cynodon dactylon (L.) Pers. (Poales: Poaceae)] in sports fields is getting important. Golf courses mainly occurs turfgrass and not much nematological studies has been done in courses of T & uuml;rkiye. In this study, total of 51 soil and 3 water samples were taken from golf courses in Antalya, T & uuml;rkiye's largest golf tourism destination, in 2021. Within the scope of this study, plant parasitic nematode (PPN) species belonging to the genera Aphelenchoides Fischer, 1894 (Tylenchida: Aphelenchoididae), Aphelenchus Bastian, 1865 (Tylenchida: Aphelenchoididae), Criconemella (De Grisse & Loof, 1965) (Tylenchida: Criconematidae), Ditylenchus Filipjev, 1936 (Tylenchida: Anguinidae), Helicotylenchus Steiner, 1945 (Tylenchida: Hoplolaimidae), Hemicriconemoides Chitwood & Birchfield, 1957 (Tylenchida: Criconematidae), Hemicycliophora de Man, 1921 (Tylenchida: Hemicycliophoridae), Hoplolaimus von Daday, 1905 (Tylenchida: Hoplolaimidae), Longidorus Micoletzky, 1922 (Dorylaimida: Longidoridae), Paratrichodorus Siddiqi, 1974 (Triplonchida: Trichodoridae) and Tylenchus Bastian, 1865 (Tylenchida: Tylenchidae) were identified using morphological and morphometric methods. The most detected species in the samples was Hemicycliophora punensis Darekar & Khan, 1980 (Rhabditida: Hemicycliophoridae) (22.22%), while the least detected PPN species was Helicotylenchus dihystera (Cobb, 1893) Sher, 1961 (Tylenchida: Hoplolaimidae) (3.70%). In this study, it is important there are virus vector species among the identified plant parasitic nematode genera. These nematode species can play an active role in the spread of various viral diseases in turfgrass areas. In turfgrass areas where very sensitive cultivation is carried out, such as golf courses, PPN's cause direct damages by feeding, which serve as the source of entry of pathogens into the plants. This situation increases the prevalence and severity of the disease in infected fields. Therefore, early detection of the presence of PPN's in cultivation areas is important to determine effective control strategies.
Plant-parasitic nematodes (PPNs) are significant agricultural pests that cause substantial crop losses globally. This study investigated the abundance and distribution of PPNs concerning elevation in rice fields in Malang District, East Java, Indonesia. Nematodes were sampled across elevation gradients between 0 to over 1000 meters above sea level (masl). Pratylenchus, Aphelenchoides, and Longidorus, were found in the soil and rice roots in Malang District. Pratylenchus dominated the relative abundance of PPNs in the soil at 0-400 masl, whereas Longidorus dominated at 600 to > 1000 masl. In rice root samples, Pratylenchus sp. also dominated at 0-400 masl and Longidorus was dominated at 800-100 masl. The population density of Pratylenchus negatively correlated to elevation, pH, soil organic matter, and carbon organic. However, soil temperature positively correlated with the population density of Pratylenchus. Elevation and pH showed a negative influence on the population density of Aphelenchoides, whereas soil temperature showed a positive influence on the population density of Aphelenchoides. Soil temperature negatively correlated to the population density of Longidorus, whereas elevation and soil humidity positively influenced the population density of Longidorus. However, the population density of Longidorus increased with higher elevation and soil humidity. Understanding the specific relationships between PPN populations and environmental factors is essential for developing effective pest management strategies. Targeted approaches that consider these ecological dynamics can help mitigate crop damage and enhance rice production in varying environmental conditions, especially in the Java region.
Plant parasitic nematodes (PPNs) cause significant damage to crop production worldwide, leading to substantial economic losses. Conventional chemical nematicides are effective but frequently associated with environmental and health hazards. In response, biological control methods, particularly the use of microbial pesticides, have emerged as a sustainable and effective alternative. This study focuses on the isolation and characterization of Bacillus sp. HSY32, a bacterial strain with nematicidal properties, from a tropical rainforest soil sample in Hainan, China. Soil samples were screened for nematicidal activity, which led to the identification of the strain HSY32. Detailed observations using optical and scanning electron microscopy (SEM) revealed that HSY32 forms spores and parasporal crystal structures, which are typically associated with nematicidal Bacillus species. Genomic analysis of HSY32 showed that its genome spans 6,711,949 base pairs and contains 7915 predicted genes, with an average GC content of 35.4%. Phylogenetic analysis, utilizing 16S rRNA sequences and average nucleotide identity (ANI), established that HSY32 is closely related to Bacillus mobilis, a known species within the Bacillus genus. Further genomic analysis using local BLAST identified several toxin genes with high similarity to known nematicidal genes, including cry4Ba, cry50Ba, app6Ba, cry70Bb, and tpp36Aa. To confirm the functionality of these toxin genes, they were cloned into pET-30a expression vectors and expressed in E. coli BL21 (DE3) cells. Among the expressed proteins, the Cry4Ba-like protein, with a molecular weight of approximately 110 kDa, was found to exhibit significant nematicidal activity in bioassays. This protein demonstrated the ability to kill or inhibit the growth of PPNs, indicating its potential as a biological control agent. The successful isolation of Bacillus strain HSY32 and the identification of its novel Cry4-like toxin gene represent a significant advancement in the field of biological control of plant parasitic nematodes. The nematicidal activity of the Cry4Ba-like protein highlights the potential of HSY32 as a source of new biopesticides. Further studies are required to enhance the production and application of these biocontrol agents in agriculture, paving the way for more sustainable and eco-friendly methods to control PPNs.
Sugarcane is an important cash crop grown in 137 countries, accounting for 80% of global sugar production. It supports the livelihood of more than 100 million people and up to 25% of the rural population in some countries. Plant-parasitic nematodes are one significant constraint in sugarcane production and can lead to a loss of up to 30% in productivity. More than 300 species of parasitic nematodes have been discovered in sugarcane soil. Owing to limited data, the potential damage to sugarcane crops caused by parasitic nematodes is often underestimated. The main nematodes present in sugarcane fields are root-lesion (Pratylenchus spp.), spiral (Helicotylenchus spp.), root-knot (Meloidogyne spp.), dagger (Xiphinema spp.), stunt (Tylenchorhynchus spp.), ring (Criconemella spp.), and stubby (Paratrichodorus spp.). Among these, Meloidogyne javanica and Pratylenchus zeae are the most damaging nematode species. Management of nematodes is a challenging task as there are no clear symptoms of their presence, and they often come in multiple species with varying levels of pathogenicity. Moreover, the management options available are not always effective. Integrated nematode management is a sustainable strategy for controlling nematode infestations. It involves using all possible methods to suppress the parasitic nematode population in a compatible manner and reduce it below economic threshold levels. This article focuses on the challenges of managing nematodes in sugarcane and highlights the opportunity for implementing a sustainable nematode management strategy.
The prevalence and abundance of plant-parasitic nematodes (PPNs) associated with corn ( Zea mays; Poaceae) in the Anuradhapura district of Sri Lanka are poorly understood. This study investigated the occurrence and population densities of major PPN genera associated with corn. Over 92% of the corn fields were positive for PPNs in all the sampled fields. Major PPN genera identified were Pratylenchus spp. (71.4%), Helicotylenchus spp. (28.6%), Meloidogyne spp. (21.4%), Criconemella spp. (21.4%), and Hoplolaimus spp. (35.7%). The mean population density of Pratylenchus spp. was 2020 nematodes kg-1 of soil, in the Anuradhapura corn fields. During the cropping season from November (2021) to February (2022), all PPN genera except Meloidogyne spp. were observed. Pratylenchus spp. were detected at levels below 1000 nematodes kg-1 of soil at the seedling stage, except in Kelenikawewa where the initial population was 1865 nematodes kg-1 . At the time of harvest, Pratylenchus spp. increased by 2 to 10 folds. These findings suggest a potential impact of Pratylenchus spp. on corn yield in Anuradhapura, highlighting the need for further research to assess damage levels and the overall effect of PPNs on corn production in Sri Lanka.
Plant parasitic nematodes (PPNs) are microscopic organisms that inhabit soil and plant tissues causing a significant challenge for farmers around the globe leading to substantial crop damage and losses. Major concern on the indiscriminate use of chemical nematicides has led to exploitation of safe alternatives to mitigate these losses. Entomopathogenic nematodes (EPNs) Steinernema spp. and Heterorhabditis spp. and their associated symbiotic bacteria, Xenorhabdus spp. and Photorhabdus spp. have gained attention as eco-friendly biocontrol agents against insect pests and nematodes. They have the ability to kill the insects by causing septicaemia disease in host insect by production of toxins. EPNs are soil inhabiting, free-living nematodes that also combat PPNs. The secondary metabolites produced by these bacteria exhibits antimicrobial, antifungal, nematicidal, insecticidal, and even anticancer properties. This current review explores the potential of EPNs and their symbiotic bacteria as nematode management strategies by targeting different stages of PPNs resulting in decreased egg production and nematode population. The EPNs and their associated bacteria suppress PPNs by three different ways viz., repulsion, competition and antagonism. Overall, EPNs and their symbiotic bacteria offer sustainable and effective alternatives to chemical pesticides, since application of hazardous chemical pesticides are harmful to environment and human health. This review gives an overview and idea for further research and development of EPN's and their symbiotic bacteria as commercial bioproducts towards PPNs control.