Salinity is a common environmental stress that disrupts physiological and biochemical processes in plants, inhibiting growth. Silicon is a key element that enhances plant tolerance to such abiotic stresses. This study examined the effects of silicon supplementation on physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks under NaCl-induced salinity stress. The experiment was conducted in a greenhouse using a factorial design with two rootstocks, three NaCl concentrations (0, 50, and 100 mM), and three silicon levels (0, 1, and 2 mM) in a randomized complete block design with three replicates. Salinity significantly reduced growth parameters, including shoot and root fresh and dry weights, RWC, and photosynthetic activity, with GN15 being more sensitive to salt stress than GF677. Silicon supplementation, especially at 2 mM, alleviated NaCl-induced damage, enhancing biomass retention and RWC under moderate and high NaCl levels. Additionally, silicon reduced electrolyte leakage, lipid peroxidation, and hydrogen peroxide accumulation, suggesting a protective role against oxidative stress. Biochemical analyses showed that silicon increased the accumulation of osmolytes such as proline, soluble sugars, glycine betaine, and total soluble protein, particularly in GF677. Silicon also boosted antioxidant enzyme activities, mitigating oxidative damage. In terms of mineral nutrition, silicon reduced Na+ and Cl- accumulation in leaves and roots, with the greatest reduction observed at 2 mM Si. Gene expression analysis indicated that NaCl stress upregulated key salt tolerance genes, including HKT1, AVP1, NHX1, and SOS1, with silicon application further enhancing their expression, particularly in GF677. The highest levels of gene expression were found in plants treated with both NaCl and 2 mM Si, suggesting that silicon improves salt tolerance by modulating gene expression. In conclusion, this study demonstrates the potential of silicon as an effective mitigator of NaCl stress in GF677 and GN15 rootstocks, particularly under moderate to high salinity conditions. Silicon supplementation enhances plant growth, osmotic regulation, reduces oxidative damage, and modulates gene expression for salt tolerance. Further research is needed to assess silicon's effectiveness under soil-based conditions and its applicability to other rootstocks and orchard environments. This study is the first to concurrently evaluate the physiological, biochemical, and molecular responses of GF677 and GN15 rootstocks to silicon application under salt stress conditions.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment. Six treatments were set up: CK (normal growth), SA (saline alkali stress,100 mmol/L NaCl + NaHCO3), T1 (saline alkali stress + 50 mg/L ZnO NPs), T2 (saline alkali stress + 100 mg/L ZnO NPs), T3 (saline alkali stress + 150 mg/L ZnO NPs) and T4 (saline alkali stress + 200 mg/L ZnO NPs). The results were found to show that saline alkali stress could significantly inhibit the growth and development of M9-T337 seedlings, reduce photosynthetic characteristics, and cause ion accumulation to trigger osmotic regulation system, endogenous hormone and antioxidant system imbalances. However, the biomass, plant height, stem diameter, total leaf area and leaf perimeter of M9-T337 seedlings were significantly increased after ZnO NP treatment. Specifically speaking, ZnO NPs can improve the photosynthetic capacity of M9-T337 by increasing the content of photosynthetic pigment, regulating photosynthetic intensity and chlorophyll fluorescence parameters. ZnO NPs can balance the osmotic adjustment system by increasing the contents of soluble protein (SP), soluble sugar (SS), proline (Pro) and starch, and can also enhance the activities of enzymatic (SOD, POD, and CAT) and non-enzymatic antioxidant enzymes (APX, AAO, GR, and MDHAR) to enhance the scavenging ability of reactive oxygen species (H2O2, O2 center dot-), ultimately reducing oxidative damage; ZnO NPs promoted the growth of M9-T337 seedlings under saline alkali stress by synergistically responding to auxin (IAA), gibberellin (GA3), zeatin (ZT) and abscisic acid (ABA). Additionally, the Na+/K+ ratio was reduced by upregulating the expression of Na+ transporter genes (MdCAX5, MdCHX15, MdSOS1, and MdALT1) and downregulating the expression of K+ transporter genes (MdSKOR and MdNHX4). After comprehensive analysis of principal components and correlation, T3 (150 mg/L ZnO NPs) treatment possessed the best mitigation effect. In summary, 150 mg/L ZnO NPs(T3) can effectively maintain the hormone balance, osmotic balance and ion balance of plant cells by promoting the photosynthetic capacity of M9-T337 seedlings, and enhance the antioxidant defense mechanism, thereby improving the saline alkaline tolerance of M9-T337 seedlings.
To investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, Sarcozygium xanthoxylon, Nitraria tangutorum, and Ammopiptanthus mongolicus, which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 mu mol/L) and exogenous melatonin concentration (0, 100, 200, 300 mu mol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin. The results indicate that under different concentrations of exogenous IAA and melatonin, the germination rate and vigor of the three desert plant species in saline-alkaline soil improved. However, as the concentration of melatonin increased, the germination rate and vigor of these desert plants were inhibited. Whereas, plant height, root length, leaf length, fresh weight, dry weight, and root vigor of the three desert plants were alleviated under different conditions of exogenous IAA and exogenous melatonin. under the action of two exogenous hormones, the low concentration of melatonin decreased their malondialdehyde content and increased their proline content. As melatonin levels increased, the activity of antioxidant enzymes also rose initially, followed by a subsequent decline. This study highlights the synergistic effects of two exogenous hormones on the critical role of cell osmomodulators and antioxidant enzyme activity in combating salinity damage in three desert plants.
Heavy metal contamination, particularly from cadmium (Cd) and lead (Pb), poses significant risks to soil and water resources and leads to severe damage in plants. This study investigated the physiological and molecular mechanisms of the responses of tomato (Solanum lycopersicum L.) seedlings to Cd and Pb stress by applying 50 mg/L Cd, 100 mg/L Pb, and a combination of 50 mg/L Cd + 100 mg/L Pb. The goal was to understand how these heavy metals impact the growth, antioxidant systems, and secondary metabolic pathways in tomato seedlings. The results showed that compared with the control, Cd + Pb stress significantly increased the content of soluble sugar by 37.40% and 33.46% on days 5 and 15, respectively, and the content of proline by 77.91% to 93.91% during the entire period in tomato seedlings. It also elevated electrical leakage by 110.52% on day 15, maintained the levels of malondialdehyde close to the control, enhanced the activities of superoxide dismutase by 33.32% on day 10 and 11.22% on day 15, peroxidase by 42.15% on day 10, and catalase by 90.78% on day 10. Additionally, it reduced the contents of hydrogen peroxide by 15.47% to 29.64% and the rate of formation of superoxide anions by 26.34% to 53.47% during the entire period of treatment. The transcriptomic analysis revealed a significant differential expression of the genes involved in pathways, such as phenylalanine, glutathione, arginine and proline, and nitrogen metabolism. These genes included PALs, HDCs, GGCT, ODC1, LAPs, SMS, and SAMDC. Notably, transcription factors, such as ERF109, ARF9, GRF3, GRF4, GRF7, and GRF9, were also significantly regulated. The study concluded that Cd and Pb stress enhanced the osmoregulatory and antioxidant defense systems in tomato seedlings, which may contribute to their tolerance to heavy metal stress. Future research could explore the application of these findings to develop strategies to improve the resistance of plants to contamination with heavy metals.
Excessive salt content in soil has adverse effects on cotton production, especially during the germination and seedling stages. gamma-aminobutyric acid (GABA) is an important active substance that is expected to improve the resistance of plants to abiotic stresses. This study focused on two cotton cultivars (Gossypium hirsutum L.: Tahe 2 and Xinluzhong 62) and investigated the impact of exogenous GABA (0, 1, 2, 3, and 4 mM) on seed germination, seedling growth, and related morphological, physiological, and biochemical indicators under salt stress (150 mM NaCl). The results showed that salt stress significantly reduced the germination rate and germination index of cotton seeds (decreased by 20.34% and 32.14% for Tahe 2 and Xinluzhong 62, respectively), leading to decreased seedling height and biomass and causing leaf yellowing. Salt stress induced osmotic stress in seedlings, resulting in ion imbalance (marked reduction in K+/Na+ ratio) and oxidative damage. Under salt stress conditions, exogenous GABA increased the germination rate (increased by 10.64 similar to 23.40% and 2.63 similar to 31.58% for Tahe 2 and Xinluzhong 62, respectively) and germination index of cotton seeds, as well as plant height and biomass. GABA treatment improved leaf yellowing. Exogenous GABA treatment increased the content of proline and soluble sugars, with varying effects on betaine. Exogenous GABA treatment reduced the Na+ content in seedlings, increased the K+ content, and increased the K+/Na+ ratio (increased by 20.44 similar to 28.08% and 29.54 similar to 76.33% for Tahe 2 and Xinluzhong 62, respectively). Exogenous GABA treatment enhanced the activities of superoxide dismutase and peroxidase, and reduced the accumulation of hydrogen peroxide and malondialdehyde, but had a negative impact on catalase activity. In conclusion, exogenous GABA effectively improved cotton seed germination. By regulating osmoprotectant levels, maintaining ion homeostasis, and alleviating oxidative stress, GABA mitigated the adverse effects of salt stress on cotton seedling growth.