To address the depletion of non-renewable resources and align with the principles of green development, researchers increasingly turned to natural plant extracts to synthesise bio-based waterborne polyurethanes (BWPU) as a sustainable alternative to conventional petroleum-derived BWPUs. Although BWPU demonstrated low emissions and non-toxic characteristics, they still exhibited limitations in heat resistance and relatively reduced biodegradability. Thus, to enhance the overall performance of BWPU, sorbitan monooleate (SP) and quercetin (QC) were incorporated into the formulation of hybrid waterborne polyurethane (CWPU). As natural bio-based hybrid materials, QC and SP facilitated the formation of cross-linking networks and hydrogen bonds, enhancing intermolecular interactions and conformational stability in self-cross-linking CWPU. The research concentrated on investigating the chemical structure, mechanical properties, thermal characteristics, and biodegradability of CWPU. The results demonstrated that the introduction of QC constructed a dense cross-linking network, leading to an increase in elongation at the break of CWPU from 460 % to 864 %. Under the condition of 5 % weight loss (T5%), the thermal stability of CWPU was significantly enhanced, with the decomposition temperature increasing from 200 to 243 degrees C. In addition, after degradation in soil and in a 0.6 % lipase PBS buffer for 28 days, the weight of CWPU decreased to 53 % and 48 %, respectively. CWPU can optimise the utilisation of BWPU in biomedical and packaging applications, thereby contributing to innovations in environmentally friendly materials.
Biopackaging films, such as those made from Pectin, are increasingly recognized for their sustainability in fruit preservation. This study utilizes Pectin derived from grapefruit peels to create films using evaporation casting. The research investigates factors, including Pectin concentration, sorbitol, calcium ions, and acetic acid. Film morphological and structural characterizations were performed using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray Fluorescence (XRF) spectroscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Mechanical properties such as tensile strength (TS) and elongation at break (EAB), as well as physical properties like water vapor transmission rates (WVTR), soil biodegradation, and antibacterial capacity, were evaluated for both Pectin and Pectin/AgNPs films. The results revealed that acetic acid at a concentration of 6.67 g/L converted high methoxyl Pectin to low methoxyl Pectin, which improved gel formation. The optimal film formulation consisted of 10 g/L Pectin, 0.054 g/L calcium ions, and 5 g/L sorbitol, which enhanced film mechanical strength and soil decomposition capacity. Pectin/AgNPs films showed effective antibacterial activity against both Escherichia coli and Bacillus subtilis. Additionally, weight retention and sensory tests demonstrated that Pectin/AgNPs films successfully preserved cherry tomatoes for 10 days. Overall, Pectin and Pectin/AgNPs films show significant promise for fruit preservation, emphasizing their sustainability and effectiveness.
This work reports the spatial and diurnal variations of the number densities of lunar molecular water (H2O), atomic mass unit (amu) 18 and hydroxyl (OH), amu 17 over low (0 degrees to 30 degrees), middle (31 degrees to 60 degrees) and high (61 degrees to 80 degrees) latitudinal regions of the lunar exosphere during the pre-sunrise, noon, sunset and midnight periods using the mass spectrometric data of CHandra's Atmospheric Composition Explorer-2 (CHACE-2) on board Chandrayaan-2, the second lunar mission developed in India. Both H2O and OH exhibit, particularly in the low latitude regions, a trend of increasing number density after the sunrise and up to noon, followed by a decrease till sunset. An overall higher density of H2O is obtained compared to the previous reports. The findings are justified in terms of the polar orbital height of the instrument and the duration of data procurement. The maximum number density for the low, middle and high latitudes reaches 5225 cm- 3, 5135 cm- 3 and 3747 cm- 3, respectively. The corresponding OH abundances are found to be 5079 cm-3, 5565 cm-3 and 5720 cm- 3. The diurnal variations of H2O and OH and their comparisons, similar to those of the present report may provide suitable means for tracing the lunar water cycle. The CHACE-2 observations imply that the influence of magnetotail passage on volatiles like water is to be further quantified in future missions with other sensors.
This study used rice straw-based and palm fiber-based degradable plastics with glycerol and sorbitol. AThe strength of rice straw cellulose-based degradable plastics using 20% glycerol ranged from 2 to 5.75 MPa. Similarly, the strength of palm fiber cellulose-based degradable plastics using 40% sorbitol ranged from 5 to 11.13 MPa. In a chemical analysis, the peaks between 3444.87 cm-1 and 3651.25 cm-1 represented the O-H stretching of the alcohol group. This is shown by the C-O-H hydroxyl group at the wave numbers of 1627.92, 1724.36, and 1745.58 cm-1. Moreover, these groups are hydrophilic, binding water, so they can be degraded by microbial activity in the soil. In the thermal analysis, degradable plastics from rice straw lost a lot of weight between 431.53 and 520.79 degrees C. Plastics derived from palm fibers as green products also showed extreme weight loss between 334.28 and 482.20 degrees C. Most of the material was decomposed at 600 degrees C. Both types of samples lost a lot of hydrogen groups and started to decompose and depolymerize. Rice straw plastic absorbed 10.73%-20.23% of water, while palm fiber plastic absorbed 15.34%-85.01%. The lowest water absorption rates were observed in rice straw and palm fiber degradable plastics. Rice straw and palm fiber cellulose plastics broke down in 45-48 days, in line with the American Standard Testing and Materials (ASTM) D-20.96 standard, which says that degradable plastic should take no more than 180 days to break down.
The permanently shadowed regions (PSRs) of the Moon are located at the Moon's polar regions that are permanently in shadow due to their inability to receive direct sunlight. Images of these areas are usually dark and significantly affected by noise, obscuring the lunar terrain information. Although image denoising has made considerable progress, there is still limited study on images denoising of lunar PSRs. The main challenge lies in the fact that images of PSRs are characterized by low contrast, complex noise type, and uneven illumination. The existing deep learning-based methods exhibit poor physical interpretability and cannot effectively remove complex noise. Therefore, this study introduces a novel denoising method by using combination of physical noise models and deep Learning. Specially, the physical noise model is used to simulate the noise of lunar PSRs according to the imaging principles of the lunar reconnaissance orbiter camera narrow angle camera. The improved deep learning model, which incorporates full-scale skip connections and Transformer is used to denoise the images. The proposed method is tested in 297 PRSs images with latitudes below -70 degrees and compared with state-of-the-art methods. Experimental results demonstrate that the proposed method outperforms existing methods in restoring terrain details and provides better quantitative and visual outcomes. This approach has the potential to improve the clarity of lunar PSR images and support future lunar exploration.
Lunar Reconnaissance Orbiter (LRO) was launched in 2009 to study and map the Moon and is now completing its fifth extended science mission. The LRO (see Figure 1) hosts a payload of seven different scientific instruments. The Cosmic Ray Telescope for the Effects of Radiation instrument has characterized the lunar radiation environment and allowed scientists to determine potential impacts to astronauts and other life. The Diviner Lunar Radiometer Experiment (DLRE) has identified cold traps where ice could reside and mapped global thermophysical and mineralogical properties by measuring surface and subsurface temperatures. The Lyman Alpha Mapping Project has found evidence of exposed ice in south polar cold traps as well as global diurnal variations in hydration. The Lunar Exploration Neutron Detector has been used to create high-resolution maps of lunar hydrogen distribution and gather information about the neutron component of the lunar radiation environment. The Lunar Reconnaissance Orbiter Camera (LROC) is a system of three cameras [one wide-angle camera and two narrow-angle cameras (NACs)] mounted on the LRO that capture high-resolution black-and-white images and moderate resolution multispectral (seven-color band) images of the lunar surface. These images can be used, for example, to learn new details about the history of lunar volcanism or the present-day flux of impactors. The Miniature Radio Frequency (Mini-RF) instrument is an advanced synthetic aperture radar (SAR) that can probe surface and subsurface coherent rock contents to identify the polarization signature of ice in cold traps. The Lunar Orbiter Laser Altimeter (LOLA) has been used to generate a high-resolution, 3D map of the Moon that serves as the most accurate geodetic framework available for co-locating LRO (and other lunar) data. The data produced by the LRO continue to revolutionize our scientific understanding of the Moon, and are essential to planning NASA's future human and robotic lunar missions.
Core-mantle friction induced by the precession of the Moon's spin axis is a strong heat source in the deep lunar mantle during the early phase of a satellite's evolution, but its influence on the long-term thermal evolution still remains poorly explored. Using a one-dimensional thermal evolution model, we show that core-mantle friction can sustain global-scale partial melting in the upper lunar mantle until similar to 3.1 Ga, thus accounting for the intense volcanic activity on the Moon before similar to 3.0 Ga. Besides, core-mantle friction tends to suppress the secular cooling of the lunar core and is unlikely to be an energy source for the long-lived lunar core dynamo. Our model also favours the transition of the Cassini state before the end of the lunar magma ocean phase (similar to 4.2 Ga), which implies a decreasing lunar obliquity over time after the solidification of the lunar magma ocean. Such a trend of lunar obliquity evolution may allow volcanically released water to be buried in the lunar regolith of the polar regions. As a consequence, local water ice could be more abundant than previously thought when considering only its accumulation caused by solar wind and comet spreading. Precession-driven core-mantle friction can maintain a long-lived volcanism on the Moon until similar to 3.1 Ga. Modelling suggests the Cassini state transition before the end of lunar magma ocean phase (similar to 4.2 Ga), which allows a decreasing lunar obliquity over time and the deposition of water ice in the lunar polar regions afterwards.
Determining the abundance, origin, movement, and storage of water on the Moon with far greater certainty is an ongoing primary goal of lunar exploration. Essential constraints would come from measuring water absorption features repeatedly over the same swaths as a function of time of day from a nearly polar orbit with equatorial periapsis, the goal proposed for BIRCHES (Broadband InfraRed Compact High Resolution Exploration Spectrometer) on the original Lunar Ice Cube mission. Establishing these constraints would be the goal of CLEW, Compact Lunar Explorer for Water, the instrument described in this paper. CLEW has mass, volume, and power requirements comparable but performance, including imaging capability, greatly improved relative to BIRCHES. High heritage CLEW would utilize the NASA GSFC Compact Thermal Imager (CTI), state of the art self-calibrating focal plane array combined with SIDECAR ASIC instrument electronics, combined with an active cooling system and optics similar to CLuHME (Compact Lunar Hydration and Mineralogy Experiment). The platform would likely be significantly more robust and 'roomy', due to availability of high-performance thermal protection components and a larger 12U platform. Planned addition of a compact context camera would enhance image interpretation.
Lunar permanently shadowed regions (PSRs) never see direct sunlight and are illuminated only by secondary illumination - light reflected from nearby topography. The ShadowCam imaging experiment onboard the Korea Pathfinder Lunar Orbiter is acquiring images of these PSRs. We characterize and discuss the nature of secondary illumination for the Shackleton PSR from ShadowCam radiance-calibrated images. We also use modeling to understand the magnitude and direction of the secondary illumination. Results from our analysis highlight the non-homogeneous, dynamic, and complex nature of PSR secondary lighting. Knowledge of the direction of the secondary illumination is crucial for reli-able interpretation of contrasts observed in ShadowCam images. This preliminary analysis of the floor of Shackleton crater from images acquired over multiple secondary illumination conditions does not reveal indications of exposed surface ice, even though temperatures are constantly below 110K.
Studies of the lunar surface from Synthetic Aperture Radar (SAR) data have played a prominent role in the exploration of the lunar surface in recent times. This study uses data from SAR sensors from three Moon missions: Chandrayaan-1 Mini-SAR, Lunar Recon-naissance Orbiter (LRO) Mini-RF and Chandrayaan-2 Dual Frequency Synthetic Aperture Radar (DFSAR). DFSAR sensor is the first of its kind to operate at L-band and S-band in fully and hybrid polarimetric modes. Due to the availability of only L-band data out of the two bands (L-and S-band) for the study site, this study only used DFSAR's L-band data. The dielectric characterization and polarimetric analysis of the lunar north polar crater Hermite-A was performed in this study using Chandrayaan-1 Mini-SAR, LRO Mini-RF and Chandrayaan-2 DFSAR data. Hermite-A lies in the Permanently Shadowed Region (PSR) of the lunar north pole and whose PSR ID is NP_879520_3076780. Because of its location within the PSR of the lunar north pole, the Hermite-A makes an ideal candidate for a probable location of water-ice deposits. This work utilizes S-band hybrid polarimetric data of Mini-SAR and Mini-RF and L -band fully polarimetric data of DFSAR for the lunar north polar crater Hermite-A. This study characterizes the scattering mechanisms from three decomposition techniques of Hybrid Polarimetry namely m-delta, m-chi, and m-alpha decompositions, and for fully polari-metric data Barnes decomposition technique was applied which is based on wave dichotomy. Eigenvector and Eigenvalue-based decom-position model (H-A-Alpha decomposition) was also applied to characterize the scattering behavior of the crater. This study utilizes the hybrid-pol and fully polarimetric data-based Integral Equation Model (IEM) to retrieve the values of dielectric constant for Hermite-A crater. The dielectric constant values for the Hermite-A crater from Chandrayaan-1 Mini-SAR and LRO Mini-RF are similar, which goes further in establishing the presence of water-ice in the region. The values of the dielectric constant for Chandrayaan-2 in some regions of the crater especially on the left side of the crater is also around 3 but overall the range is relatively higher than the com-pact/hybrid polarimetric data. The dielectric characterization and polarimetric analysis of the Hermite-A indicatively illustrate that the crater may have surface ice clusters in its walls and on some areas of the crater floor, which can be explored in the future from the synergistic use of remote sensing data and in-situ experiments to confirm the presence of the surface ice clusters.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.