Nitrate (NO3-) is a prominent atmospheric pollutant and a key chemical constituent of snow and ice, which plays a crucial role in the atmosphere and significantly impacts regional climate and environment conditions through a series of complex chemical processes. By summarizing the recent research progress on the nitrate chemical process (particularly on the isotopic measurements of NO3- (delta 15N, Delta 17O and delta 18O)) in atmosphere and glacier snow, this study mainly investigated the chemical compositions and chemical processes, formation pathways, and photochemical reactions of nitrate in snow and atmosphere. Our results identified that the main ways of atmospheric nitrate formation are the hydrolysis of N2O5 and the reaction of center dot OH with NO2; the spatial distribution of Delta 17O and delta 18O values of atmospheric nitrate have a significant latitudinal trend between 30 degrees N-60 degrees N; the study of stable isotopes (delta 15N and delta 18O) and the oxygen isotope anomaly (Delta 17O) of nitrate have mainly been carried out over the densely populated and coastal mega cities; there exist significant gaps in the study of chemistry processes of nitrate in snow and ice and the air-snow interfaces across glaciated regions. This study provides a basic reference for more robust observations and research of nitrate in glacier areas in the future.
Reducing the uncertainty in aerosol radiative forcing requires a comprehensive understanding of the factors affecting black carbon (BC) light absorption. In this study, the characteristics and influencing factors of light absorption enhancement (Eabs) of refractory BC (rBC) were investigated by conducting intensive measurements at an urban site in northwest China during the early summer of 2018. On average, the absorption of rBC was enhanced by 34% as a result of the internal mixing of rBC with other aerosol components. Secondary inorganic aerosols (SIAs) were found to have considerable effects on the Eabs of rBC. The Eabs showed a robust linear relationship with the bulk nitrate/rBC mass ratio in fine particles, with an increase of 3% per nitrate/rBC ratio unit. A notable increase in Eabs from dusk to the next morning was observed, in accordance with the diurnal variations in nitrate and sulfate, indicating the excellent contribution of non-photochemical formation of SIAs to Eabs. This fact was further supported by the positive correlation of the nitrate/rBC and sulfate/rBC ratios with relative humidity (RH) rather than photochemical indicators. This study indicates that the aqueous and/or heterogeneous formation of SIAs is likely the dominant aging pathway leading to the high Eabs of rBC.
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3-). Researchers have identified two primary mechanisms that increase nitrogen and NO3- availability within permafrost soils: (1) the 'frozen feast', where previously frozen organic material becomes available as it thaws, and (2) 'shrubification', where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO3- availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO3- production and accumulation. We extrapolate relationships between NO3- and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO3- availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO3- availability by similar to 250-1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO3- availability and boost future fertilization and productivity in the Arctic.
The largest permafrost area in China is on the Qinghai-Tibetan Plateau (QTP), and the nitrogen biogeochemical cycles in this area have received significant attention. However, there is insufficient knowledge of the available soil nitrogen and microbial biomass nitrogen (MBN) dynamics in this region, which hinders our understanding of the changes in the ecosystem and the effects of climate change on the nitrogen dynamics in the future. In this study, we determined the monthly changes in ammonium nitrogen, nitrate nitrogen, dissolved organic nitrogen (DON), and MBN contents of the topsoil (at depths of 0-20 cm) from April 2016 to March 2017 in the permafrost region on the QTP. The results show that soil NH4+-N and DON contents decreased during the growing season, while soil NO3--N content increased during the growing season and in the middle of the winter. The soil MBN contents increased at the beginning of the growing season and decreased during peak growth period, despite significant variations among the different sites. The soil temperature was positively correlated with soil NO3--N content but it was negatively correlated with the NH4+-N and DON contents. The soil moisture was positively correlated with the soil NO3--N, DON, and MBN contents. The primary factor affecting the seasonal patterns in soil NO3--N and DON contents was soil moisture. Soil moisture and plant growth also affected soil MBN via nutrient competition. The nutrient uptake by plants overwhelmed effect of temperature on the MBN in growing season. These findings improve our understanding of the nitrogen biochemical cycles and their response to future climate change.
The largest permafrost area in China is on the Qinghai-Tibetan Plateau (QTP), and the nitrogen biogeochemical cycles in this area have received significant attention. However, there is insufficient knowledge of the available soil nitrogen and microbial biomass nitrogen (MBN) dynamics in this region, which hinders our understanding of the changes in the ecosystem and the effects of climate change on the nitrogen dynamics in the future. In this study, we determined the monthly changes in ammonium nitrogen, nitrate nitrogen, dissolved organic nitrogen (DON), and MBN contents of the topsoil (at depths of 0-20 cm) from April 2016 to March 2017 in the permafrost region on the QTP. The results show that soil NH4+-N and DON contents decreased during the growing season, while soil NO3--N content increased during the growing season and in the middle of the winter. The soil MBN contents increased at the beginning of the growing season and decreased during peak growth period, despite significant variations among the different sites. The soil temperature was positively correlated with soil NO3--N content but it was negatively correlated with the NH4+-N and DON contents. The soil moisture was positively correlated with the soil NO3--N, DON, and MBN contents. The primary factor affecting the seasonal patterns in soil NO3--N and DON contents was soil moisture. Soil moisture and plant growth also affected soil MBN via nutrient competition. The nutrient uptake by plants overwhelmed effect of temperature on the MBN in growing season. These findings improve our understanding of the nitrogen biochemical cycles and their response to future climate change.
Field observations have suggested that particulate nitrate can promote the aging of black carbon (BC), yet the mechanisms of the aging process and its impacts on BC's light absorption are undetermined. Here we performed laboratory simulation of internal mixing of flame-generated BC aggregates with ammonium nitrate. Variations in particle size, mass, coating thickness, effective density, dynamic shape factor, and optical properties were determined online by a suite of instruments. With the development of coatings, the particle size initially decreased until reaching a coating thickness of similar to 10 nm and then started increasing, accompanied by an increase in effective density and a decrease in dynamic shape factor, reflecting the transformation of BC particles from highly fractal to near-spherical morphology. This is partially attributable to the restructuring of BC cores to more compact forms. Exposing coated particles to elevated relative humidity (RH) led to additional BC morphology changes, even after drying. Particle light absorption and scattering were also amplified with ammonium nitrate coating, increasing with coating thickness and RH. For BC particles with a 17.8 nm coating, absorption and scattering were increased by 1.5- and 7.9-fold when cycled through 70% RH (5-70-5% RH), respectively. The irreversible restructuring of the BC core caused by condensation of ammonium nitrate and water altered both absorption and scattering, with a magnitude comparable to or even exceeding the effects of increased coating. Results show that ammonium nitrate is among the most efficient coating materials with respect to modifying BC morphology and optical properties compared with other inorganic and organic species investigated previously. Accordingly, mitigation of nitrate aerosols is necessary for the benefits of both air pollution control and reducing the impacts of BC on visibility impairment and radiative forcing on climate change. Our results also pointed out that the effect of BC core restructuring needs to be considered when evaluating BC's light absorption enhancement. (C) 2020 Elsevier Ltd. All rights reserved.
Inorganic particulate nitrate (p-NO3-), gaseous nitric acid (HNO3(g)) and nitrogen oxides (NOx = NO + NO2), as main atmospheric pollutants, have detrimental effects on human health and aquatic/terrestrial ecosystems. Referred to as the 'Third Pole' and the 'Water Tower of Asia', the Tibetan Plateau (TP) has attracted wide attention on its environmental changes. Here, we evaluated the oxidation processes of atmospheric nitrate as well as traced its potential sources by analyzing the isotopic compositions of nitrate (delta N-15, delta O-18, and Delta O-17) in the aerosols collected from the Mt. Everest region during April to September 2018. Over the entire sampling campaigns, the average of delta N-15(NO3-), delta O-18(NO3-), and Delta O-17(NO3-) was -5.1 +/- 2.3 parts per thousand, 66.7 +/- 10.2 parts per thousand, and 24.1 +/- 3.9 parts per thousand, respectively. The seasonal variation in Delta O-17(NO3-) indicates the relative importance of O-3 and HO2/RO2/OH in NOx oxidation processes among different seasons. A significant correlation between NO3- and Ca2+ and frequent dust storms in the Mt. Everest region indicate that initially, the atmospheric nitrate in this region might have undergone a process of settling; subsequently, it got re-suspended in the dust. Compared with the Delta O-17(NO3-) values in the northern TP, our observed significantly higher values suggest that spatial variations in atmospheric Delta O-17(NO3-) exist within the TP, and this might result from the spatial variations of the atmospheric O-3 levels, especially the stratospheric O-3, over the TP. The observed delta N-15(NO3-) values predicted remarkably low delta N-15 values in the NOx of the sources and the N isotopic fractionation plays a crucial role in the seasonal changes of delta N-15(NO3-). Combined with the results from the backward trajectory analysis of air mass, we suggest that the vehicle exhausts and agricultural activities in South Asia play a dominant role in determining the nitrate levels in the Mt. Everest region. (c) 2020 Elsevier Ltd. All rights reserved.
Direct in-situ measurements of aerosol mixing state, optical properties, and chemical composition were performed in summertime of 2014 at Nanjing, China. Aerosols were predominantly internally mixed, with an average effective density of 1.30-1.63 g cm(-3) for 50-230 ran particles, increasing with size. Externally mixed, relatively fresh black carbon (BC) was only episodically observed, with a second mode peaking at 0.51-0.91 g cm(-3). For particles of 110, 140, 185 and 230 nm, BC accounted for 1.7 +/- 1.2%, 4.8 +/- 3.0%, 5.3 +/- 3.3%, and 5.1 +/- 3.3% of the particle mass, while being present in 26.4 +/- 5.3%, 58.1 +/- 27.7%, 59.8 +/- 25.4%, and 62.4 +/- 27.9% of the particle number concentration, indicating that BC was heavily coated and may contribute significantly to atmospheric aerosol population. Substantial BC absorption enhancement was observed with Eat of 1.41 +/- 0.39, 1.42 +/- 0.40 and 1.35 +/- 0.38 at 405, 532 and 781 nm, respectively. High volatile aerosol components, in particular nitrate, were found to play vital roles in BC's absorption enhancement. High E-abs values were associated with elevated NOx and RH. A clear diurnal pattern was observed for E-abs supporting a significant impact from traffic emissions, which stood in contrast with previous studies reporting very thin coating and negligible absorption enhancement for traffic emitted BC. High concentrations of NOx co-emitted with BC from traffic sources and its conversion to particulate nitrate likely contributed to the aging and increased absorption of BC particles, which was even enhanced under high RH above the deliquescence point of ammonium nitrate. Therefore, our results indicated that the mitigation of NOx emissions from traffic was critical for reducing the positive radiative forcing induced by BC, especially under high RH conditions.
This study investigates the impacts of active layer detachments (ALDs) on nitrogen in seasonal runoff from High Arctic hillslope catchments. We examined dissolved nitrogen in runoff from an undisturbed catchment (Goose (GS)) and one that was disturbed (Ptarmigan (PT)) by ALDs, prior to disturbance (2007) and 5 years after disturbance (2012). The seasonal dynamics of nitrogen species concentrations and fluxes were similar in both catchments in 2007, but the mean seasonal nitrate concentration and mass flux from the disturbed catchment were on the order of 30 times higher relative to the undisturbed catchment in 2012. Stormflow yielded 45% and 60% of the 2012 total dissolved nitrogen flux in GS and PT, respectively, although rainfall runoff provided less than 25% of seasonal discharge. Results support that through the combined effects of increased disturbance and rainfall, climate change stands to significantly enhance the export of nitrate from High Arctic watersheds. This study highlights that the increase in the delivery of nitrate from disturbance is especially pronounced late in the season when downstream productivity and the biological demand for this often limiting nutrient are high. Our results also demonstrate that the impact of ALDs on nitrate export can persist more than 5 years following disturbance.