In the process of expanding ballasted railway capacity, there is a significant increase in train axle load and speed, which leads to significant mud pumping disease under multi-stage/multi-frequency train load-wetting coupling, and its mechanism is still unclear. Mud pumping model tests from ballasted track subgrades under multi-stage/ multi-frequency train load-wetting (MSC-W test/MFC-W test) coupling were conducted. The test results show that in the unsaturated state, the accumulated deformation of MSC-W test is more significant than that of MFC-W test, and the compactness of the subgrade filler is greater without significant particle migration. Under saturated or near saturated conditions, the MSC-W and MFC-W tests produces significant mud pumping by the driving force of dynamic pore water pressure. The amounts of mud pumping, fine particle layer displacement and void contaminant index (VCI) of the MFC-W test are significantly higher than those of the MSC-W test.
To investigate the one-dimensional nonlinear consolidation characteristics of a double-layer foundation under multi-stage loading, a one-dimensional nonlinear consolidation equation for the double-layer foundation was established, and numerical solutions were obtained through the finite difference method. The accuracy of the proposed solution was validated by comparing it with existing analytical solutions and finite element analysis results. Based on these comparisons, the influence of nonlinear parameters, double-layer soil properties, and loading conditions on the consolidation behavior of the double-layer foundation was further examined. The results indicated that, under multi-stage linear loading conditions, an increase in the initial permeability coefficient ratio of the double-layer foundation resulted in a significant reduction in excess pore water pressure and an acceleration of consolidation. The compression index was found to predominantly affect the later stages of consolidation, with minimal impact on the early stages. The consolidation rate was observed to increase as the permeability coefficient ratio decreased. Despite notable differences in early consolidation behavior under varying loading conditions, the findings reveal that these discrepancies are alleviated in the later stages, ultimately resulting in no significant overall difference in the time required for the foundation to achieve complete consolidation.
To address problems encountered in current potato harvesting machines in hilly and mountainous areas, such as potato damage, poor adaptability, low operational efficiency, and the inability of traditional harvesters to meet the requirements in these areas, a new potato harvester equipped with excavation and a multi-stage separation conveyor was developed by using design and simulation programs as an innovative way to identify the best operating factors. SolidWorks Software was used to design an excavation and a multi-stage separation conveyor. ANSYS Workbench machine static structure analyzed stress, strain, and deformation. The working process of soil and tuber separation was tested and kinematically analyzed by EDEM-RecurDyn and a 5F01M camera. A field experiment was also conducted on the machine under several factors: working speed (W), excavation depth (D), vibration intensity level (V), and conveyor inclination angle (N). The quadratic regression orthogonal rotating combination experiment tested four factors with five levels. The results of the non-load experiment showed that the lowest ratio of impurities was at the linear speed level (Q3, S5, O3) for the first and second separation conveyor and the side conveyor, respectively. The results of the field experiment showed that the optimal parameters were the working speed of 1.05 m/s, the digging depth of 180 mm, and the vibration force II inclination angle on the screen surface of 22 degrees, which gave the highest potato lifting rate of 98.8%, and the bruising rate was 1.37%. The damage rate was 1.43%, superior to national industry standards. With its exceptional performance, the machine can effectively meet and solve the challenges of harvesting requirements, making it a valuable tool for the industry.
The reactivation events of old landslides in the Three Gorges Reservoir area occur frequently, making it imperative to study the water softening characteristics and reactivation mechanism. An old clay landslide was selected as the focus of the research, and a segmented water injection permeable sliding surface was designed to simulate the formation and evolution of the old sliding zone during the process of groundwater rise. Volumetric water content sensors, pore water pressure gauges, high-speed camera devices, and Geopiv-RG digital image processing technology were used to obtain data on multiple physical fields. The analysis results indicated that the decrease in shear strength of the sliding zone soil and the sudden increase in pore water pressure on the sliding surface were important factors in the reactivation of old landslides. The surface deformation exhibited prominent zoning characteristics, primarily categorized into zones of strong deformation, weak deformation, and traction deformation. The failure mechanism involved shear sliding at the front edge, tensile cracking and failure at the trailing edge, and shear creep in the middle section. The development of multi-stage secondary sliding zones in old landslides can be categorized into three types: parallel to the original old sliding zone, partially overlapping with the original sliding zone to form a layered landslide, and completely overlapping with the original sliding zone, indicating overall reactivated deformation.
This paper proposes an Artificial Neural Network (ANN) model using a Multi-Stage method to optimize the configuration of an External Lightning Protection System (ELPS) and grounding system. ELPS is a system designed to protect an area from damage caused by lightning strikes. Meanwhile, the grounding system functions to direct excess electric current from lightning strikes into the ground. This study identifies the optimal protection system configuration, reducing the need for excessive components. The ELPS configuration includes the number of protection pole units and the height of the protection poles. In contrast, the grounding system configuration consists of the number of electrode units and the length of the electrodes. This study focuses on the protection system configuration at a Photovoltaic Power Station, where the area is highly vulnerable to lightning strikes. Several aspects need to be considered in determining the appropriate configuration, such as average thunderstorm days per year, ELPS efficiency, total area of photovoltaic module, area to be protected, soil resistivity, electrode spacing factor, and the total required electrode resistance. The proposed multi-stage ANN model consists of three processing stages, each responsible for handling a portion of the overall system tasks. The first stage is responsible for determining the protection pole configuration. In the second stage, the Lightning Protection Level (LPL) classification is performed. Then, in the third stage, the process of determining the grounding configuration is handled. The analysis results show that the Multi-Stage ANN model can effectively determine the configuration with a low error rate: MAE of 0.265, RMSE of 0.314, and MPE of 9.533%. This model can also explain data variation well, as indicated by the high R2 value of 0.961. The comparison results conducted with ATP/EMTP software show that the configuration produced by ANN results in fewer protection pole units but with greater height. Meanwhile, ANN produces a configuration with shorter electrode lengths but fewer units in the grounding system.
The worldwide pesticide marketplace was approximate 85 billion dollars in 2019, growing at a geometric progression rate of 4.2% from 2015, and by 2023 it is projected to grow at a rate of 11.5% to approximately 130.7 billion dollars. Pesticides' uniqueness is defined by the distinctiveness of their chemistry and their relationship with the environment. Pesticide mobility and bioavailability in water bodies are determined by their desorption and absorption processes from soil particles. Waterbodies are severely affected with the build-up of these poisonous impurities with its imbalance in pH and accumulation of heavy metals, which adversely distress the aquatic ecology in the waterbodies. Pesticides are not only damaging to the ecology of the waterbodies; it is also consequentially harmful to humans. It causes gastrointestinal disorders, cardiac and respiratory issues, and even affects the biotic molecules and organs subsequently leading to acute and/or chronic illnesses. This article reviews 200 scientific literatures for existence of pesticides in drinking water and the various remediation technologies available for the treatment to render the water potable. Upon review of more than 20 technologies, suggestions have been made for the best probable technologies for water with presence of pesticide.
The stabilization of asphalt pavement bases with granular soil and aggregates emulsified with asphalt is a widely used technique in road construction and maintenance. It aims to improve the mechanical properties and durability of the lower pavement layers. Currently, there is no consensus on the most suitable method for designing emulsified granular aggregates with reclaimed asphalt pavement (RAP), as it is very complex. Therefore, the methodology is generally based on compliance with one or more volumetric or mechanical parameters established in the highway regulations for conventional asphalt mixtures, which does not guarantee the optimization and characterization of the recycled mixture in the base course. In this study, granular mixtures were developed, including five with emulsion and one emulsion-free as a control mix. Granular RAP mixes were designed in this study, including five with emulsion and one emulsion-free as a control mix. The five mixes ranged from 1% to 5% emulsion and were characterized by multi-stage triaxial tests with repeated load resilient modulus (RM) and permanent deformation (PD) to evaluate their mechanical behavior. The results showed that the mixes had RM values between 350 and 500 MPa, consistent with literature values. However, they showed similar levels of accumulated deformation to the control mix without RAP emulsion. The sample with 1 % RAP emulsion exhibited a satisfactory RM value and better performance in PD than the control mix (5 mm) and showed accumulated PD values of up to 4 mm. In contrast, the other samples exhibited deformations of up to 6 mm. In this study, the multi-stagge triaxial RM and PD tests were found to be an effective predictive method for characterizing the behavior of RAP materials in base courses, regardless of the types of admixtures contained. Multi-stage resilient modulus and PD tests can be considered as a predictive method for the behavior of milled material in base courses. They were able to provide initial data for interpreting the behavior of ETB mixtures.
To provide new insights into the liquefaction and post-liquefaction behaviors of calcareous sand with and without geosynthetics reinforcement, a series of multi-stage cyclic triaxial tests were conducted. The geosynthetics employed in this study include geogrid, geotextile, and geotextile-geogrid composite. The multi-stage tests consist of an initial cyclic loading applied to cause liquefaction, followed by undrained monotonic loading without excess pore pressure dissipation. The effect of different arrangements of reinforcement layer on the behaviors of calcareous sand is examined and discussed in this study. The test results indicate that a unique relationship can be observed between the double amplitude axial strain and the pore pressure ratio of calcareous sand, irrespective of the influence of reinforcement layer arrangement, providing an effective means of predicting the strain at a given pore pressure level. The liquefaction resistance of calcareous sand increases with the increase in the number of reinforcement layer and decreases with the increase in the distance from the first layer of reinforcement to the sample's top surface. Compared to geogrid and geotextile, the proposed geotextilegeogrid composite exhibits better efficiency in enhancing the liquefaction resistance of calcareous sand. The reinforcement also accelerates the recovery of strength for liquefied calcareous sand and increases the maximum shear strength of sand at large axial strain during the post-liquefaction stage.