Bridge piers embedded in a riverain region are commonly supported by pile foundations. This provides a flexible restraint to the bridge pier instead of a theoretical rigid foundation type. In this work, a cylindrical bridge pier with a monopile foundation is introduced as an example. A modeling framework is proposed to investigate the dynamic response of bridge piers to the impact of flash flooding. The fluid-structure interaction is directly investigated via a two-way fluid-structure coupling approach and the p-y springs distributed over the interface between the soil and pile are adopted to model the lateral restraints from the soil. The effect of the soil-structure interaction (SSI) on the structural dynamic response is investigated on the basis of 3D numerical models with and without a pile foundation. Moreover, the soil around the pile foundation is vulnerable to erosion by flood flow. This continuous exposure of the pile foundation reduces the lateral load bearing capacity and consequently increases the dynamic responses of bridge structures to flash flooding. To demonstrate the effects of increased exposure of bridge pile foundations on structural dynamic responses, several different scour depths with scour ratios ranging from 0 to 0.5 are included in the numerical analysis. Two different considerations of the pile bottom are included in this study: completely fixed and only vertically fixed. The behavior of bridge piers subjected to flash flooding is thoroughly analyzed, and the damage mechanisms for these two foundation types are investigated. The relationships between peak responses and fundamental periods are determined via regression analysis.
Experimental evidence indicates that multidimensional cyclic loading of soils causes larger accumulation of deformations than equivalent one-dimensional loading. The response of sand to high-cyclic loading with 10,000 cycles and up to four-dimensional stress paths (i.e., four independent oscillating components) is examined in 120 triaxial and hollow cylinder tests in this work to extend these findings. With increasing number of oscillating stress components, the accumulation of permanent strains tends to increase. It is demonstrated that the definition of the multidimensional strain amplitude incorporated in the high-cycle accumulation (HCA) model can account for this. The validation of the HCA model for complex cyclic loading is complemented by the simulation of model tests on monopile foundations of offshore wind turbines subjected to multidirectional cyclic loading, for which the consideration of spatially variable cyclic loading with nonconstant load amplitudes in the HCA model is discussed. For this purpose, an extension of the HCA model considering multiple strain amplitudes is presented.
Investment allocation for offshore wind turbines (OWT) as an important class of structures is typically carried out through supporting decision-making approaches utilizing some fragility functions. This study attempts to deliver fragility functions for OWTs on monopile foundations accounting for soil-structure interaction (SSI) effects. Simultaneous wind, wave, and earthquake loads were considered probabilistically by adjusting their occurrence hazard levels for predefined damage states in diverse performance levels. The designated damage states in this study are defined based on collapse probability and some targeted performance levels which could be very straightforward to distinguish. The damage state detection is based on rotation in the connection of the tower's transition part to the foundation, which perceptibly reveals the effects of SSI on fragility functions. The expected results comprise modified fragility functions accounting for SSI effects contributing to less median spectral acceleration, more evidently rotational demands, further dispersions, and a subsequent dominant increase in the probability of exceeding performance limit states. Considering operational performance level, the most applied design performance level for turbines as an important class of structures, not considering the SSI effects could noticeably underestimate the demands and lead to high-risk decisions.
The southeastern rock base sea area is the most abundant wind resource area, and it is also the mainstream construction site of offshore wind farms (OWFs) in China. The weathered residual soil is the main seabed component in the rock base area, which is the important bearing stratum of the offshore wind turbine foundation. Previous studies on the mechanical properties of seabed materials and bearing characteristics of the pile foundations in OWFs have mainly focused on the submarine soil-based seabed, resulting in a lack of direct reference for the construction of offshore wind power in the rocky seabed. Therefore, the mechanical properties of weathered residual soil and the bearing behaviors of monopile foundations are mainly investigated in this study. Firstly, dynamic triaxial tests are conducted on the weathered residual soil, and experiments analyze insight into the evolution law of the hysteresis curve, cumulative strain, and stiffness attenuation. Then, the horizontal loading behaviors of monopile foundations in residual soil are analyzed by numerical simulations; more critically, the service performances under wind and wave coupling loads are evaluated, which provide a direct theoretical basis for the construction and design of offshore wind turbine foundations in rock base seabeds.
The bearing and deformation characteristics of monopile foundation under the monotonic and cyclic loads are key factors to consider in the design of the transmission tower structure or offshore wind energy converters. The model tests and numerical simulations of monopile foundation under monotonic and cyclic horizontal loads were performed in sand to explore the bearing characteristics and the deformation characteristics of pile. The potentially affected factors including loading height, relative density of soil, displacement amplitude were analyzed. The results show that with the loading height varies from 1D to 4D, the horizontal static bearing capacity of the pile under different the soil relative density decreased by 1.63-1.9 times, and the peak bending moment increased by 22.9%-36.8%. Under the cyclic loads, the peak load on the pile top increased by 31.7%-56.1% for each 1 mm increase in displacement amplitude. The stiffness of soil around pile varies as the number of cycles increases with the development trend of decreases first and then increases gradually. As the horizontal load and cycle number increase, the range of the displacement of soil extends towards the bottom of pile, until it covers the entire lower part of the model.