共检索到 2

Liquefaction, a significant hazard triggered by earthquakes, is characterized by a sudden loss of shear strength due to a rise in pore pressure and the corresponding reduction in effective stresses, leading to structural damage and substantial economic losses. Numerous studies have investigated various mitigation measures for liquefaction. Recently, the focus has shifted toward developing environmentally friendly, cost-effective technologies to enhance liquefaction resistance. One such promising technique is induced partial saturation (IPS), which has the potential to serve as a cost-effective, environmentally friendly, and practical solution for both new and existing structures. The IPS mechanism was examined and discussed extensively in the first part of this review. The effectiveness and usability of this approach in the soil are reviewed in the next section, using small, large-scale laboratory and field-scale testing. Following that, microbubble and pore-scale studies are used to quantify durability and stability. The review has provided several key recommendations to address the current challenges and limitations of the technique, aiming to enhance its effectiveness and stability. Given the ongoing research and the need to ascertain their suitability for practical applications, the existence of a comprehensive literature review becomes essential. This review will provide researchers with valuable insights into the current state of knowledge in this field and serve as a foundation for future studies.

期刊论文 2024-12-10 DOI: 10.1007/s40098-024-01111-4 ISSN: 0971-9555

Radon is a naturally occurring radioactive gas found in rocks, soil, and building materials. Precisely because of its gaseous nature, it tends to concentrate in indoor environments, resulting in a danger to human health. The effects of radon have been described, documented, and attested by the international scientific community and recognized as the second cause of lung cancer after cigarette smoking and in synergy with it. In December 2013, the Council of the European Union issued Council Directive 2013/59/Euratom, which establishes basic safety standards relating to protection against the dangers deriving from exposure to ionized radiation and managing the health risks associated with radon. In addition, designing buildings against radon risk in synergy with the use of low environmental impact materials is one of the objectives of building sustainability certifications. This work presents how radon creeps into buildings and reports several technologies that are needed to remove and mitigate the risk associated with indoor radon in existing and new buildings.

期刊论文 2024-01-01 DOI: 10.3390/su16010324
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页