To enhance the improvement effect of Enzyme-Induced Carbonate Precipitation (EICP) technology more effectively, an abundant renewable resource-lignin-was introduced as an additive during the EICP modification process of silty clay. The mechanical properties of the improved soil specimens were analyzed from a macroscopic point of view by using unconsolidated undrained (UU) triaxial tests and unconfined compressive strength (UCS) tests to determine the optimal lignin content and curing time. The micro-mechanism of the improved soil specimens was elucidated from the microscopic point of view by combining scanning electron microscopy (SEM) and X-ray diffraction (XRD) tests. The experimental results showed that lignin synergized with EICP could effectively improve the mechanical properties of the soil, and the mechanical properties of the co-consolidated soil specimens were better than those of the single consolidated and untreated soil specimens as a whole. The single EICP-consolidated soil specimen had undergone brittle damage; lignin could enhance the toughness of the soil and weaken its brittle characteristics. With the increase of lignin content, the mechanical indicators of co-consolidated soil specimens showed the trend of increasing and then decreasing, and reached the optimum at 0.75%. Moreover, the addition of lignin significantly increased the cohesive force, while the friction angle was less affected. With extended curing time, the mechanical indicators of the co-consolidated soil specimens increased overall, and tended to stabilize after 7 days of curing, hence selecting 7 days as the optimal curing time. From the microscopic point of view, lignin provides nucleation sites for the calcium carbonate precipitates generated by EICP, and the joint action of the two can fill the soil pores and cement the soil particles, thereby improving the overall strength of the soil. The results of the study can provide a theoretical basis and practical reference for the construction of foundation projects in silty clay areas.
Using silty clay as roadbed filling can lead to roadbed diseases. In this paper, silty clay was modified with lignin and BFS (GGBS). Then, the mechanical properties, freeze-thaw characteristics, and microscopic mechanisms were investigated using unconfined compression tests, California bearing ratio tests, rebound modulus tests, freeze-thaw cycling tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that as the curing age increased, the unconfined compressive strength (UCS) of modified silty clay gradually increased, and the relationship between the stress and axial strain of the samples gradually transitioned from strain-softening to strain-hardening. As the lignin content decreased and the BFS content increased, the UCS, California bearing ratio (CBR), and rebound modulus of the modified silty clay first increased and then tended to stabilize. Adding lignin and BFS can effectively resist volume increase and mass loss during freeze-thaw cycles. When the ratio of lignin to BFS was 4%:8%, the growth rate of the UCS, CBR, and rebound modulus was the largest, the change rate in volume and mass and the loss rate of the UCS under the freeze-thaw cycle were the smallest, and the silty clay improvement effect was the most significant. The microscopic experimental results indicated that a large amount of hydrated calcium silicate products effectively increased the strength of interunit connections, filled soil pores, and reduced pore number and size. The research results can further improve the applicability of silty clay in roadbed engineering, protect the environment, and reduce the waste of resources.
To enhance the resistance to local scour around offshore wind turbine monopiles, 15 mixtures were designed based on Response Surface Methodology (RSM). Cement content, sodium silicate content, and rubber powder content were selected as independent variables. After determining their flowability, the compressive strength and shear strength were measured after curing in pure water and artificial seawater for 3 days, 7 days, 14 days, and 28 days. Experimental results indicate significant improvement in the mechanical properties of the modified soil, including increased Unconfined Compressive Strength (UCS), internal friction angle, and cohesion. The optimal mix ratio is identified as CSR40-10-15, consisting of 40% cement, 10% sodium silicate, and 15% rubber powder. The strength variation mechanism is elucidated from both macroscopic and microscopic perspectives. Finally, numerical simulations using Computational Fluid Dynamics (CFD) software validate the scour resistance performance based on the optimal mix ratio of flowable solidified soil, offering a new approach for local scour protection around offshore wind turbine monopile.