Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84 %, 14.35 %, and 12.45 %, respectively, while decreasing nitrate nitrogen by 12.89 %. In addition, MPs exposure enhanced soil urease activity by 11.24 % but reduced phosphatase activity by 6.62 %. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09 % decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.
Although plastic has many desirable properties and numerous social benefits, it is a serious ecological problem due to massive application and difficult decomposing. Various environmental and anthropogenic impacts indicate that plastic breaks down into small particles that are ubiquitous in the environment. Microplastics (MPs) are detected in oceans and seas, freshwater, wastewater, glaciers, soils, air, sediments, precipitation, plants, animals, humans, food and drinking water worldwide. Traces of MPs have been found even in remote and sparsely populated areas, indicating far-reaching movement through environmental compartments. Inadequate waste management and wastewater treatment is considered the major source of MP pollution. MPs are persistent contaminants that can adversely affect the ecological balance of the environment and may damage the health of living organisms, including humans. This review emphasizes the current global problems of MP pollution. It covers different areas of MPs, which include basic characteristics, interactions with other pollutants, occurrence and impacts in the environment, toxic effects on living organisms, sampling, sample pre-treatment and analytical methodology for the identification and quantification of MPs in different matrices as well as potential reduction and remediation strategies and the possibilities for effective control of MPs in the environment. Various interesting and useful previously published knowledge collected in this review can serve as a valuable foundation for further MP research.
Microplastics are posing the potential threats to the Earth's environment. Besides, airborne microplastics were calculated to cause positive net radiative forcing recently. Due to the light-absorbing properties, microplastics may have the effects on the snow/ice surface albedos in the cryospheric regions, which may further enhance the cryospheric melting under the rapid global warming and increasing plastic pollutants dropped into the environments. We suggested to urgently hasten the systematic studies on microplastics' effects on the radiative forcing across the cryospheric regions, and evaluated the possible impact on cryospheric melting in the future.