共检索到 5

Invasive weeds cause substantial ecological, economical, and social problems, and are currently being controlled by herbicide applications. However, how herbicides affect other ecological interactions of invasive weeds, including their symbiosis with arbuscular mycorrhizal fungi (AMF), remains poorly understood. In this study, we therefore conducted field investigation to understand how the herbicide glyphosate affects the AMF diversity in the rhizosphere of the invasive weed Solidago canadensis. We also performed a greenhouse experiment to study if AMF can contribute to herbicide resistance. The results showed that the AMF colonization rate was significantly higher in S. canadensis when exposed to glyphosate in the field or in greenhouse settings. AMF diversity was also found to be higher in the rhizosphere soil after glyphosate application in the field. AMF colonization in greenhouse experiments also positively correlated with plant growth and reduced amounts of damaged leaves and the plant's content of the stress markers flavonol and anthocyanin. Chlorophyll content was significantly enhanced by AMF colonization, regardless of glyphosate application. These results indicate that herbicide can promote AMF colonization and diversity, and that AMF can enhance the herbicide resistance of S. canadensis. These findings suggest that herbicide application may promote the spread of S. canadensis through enhanced microbial interactions, posing new eco-environmental risks.

期刊论文 2025-08-01 DOI: 10.1016/j.apsoil.2025.106203 ISSN: 0929-1393

The pollution of heavy metals (HMs) is a major environmental concern for agricultural farming communities due to water scarcity, which forces farmers to use wastewater for irrigation purposes in Pakistan. Vegetables grown around the cities are irrigated with domestic and industrial wastewater from areas near mining, paint, and ceramic industries that pollute edible parts of crops with various HMs. Cadmium (Cd) is an extremely toxic metal in arable soil that enters the food chain and damages the native biota, ultimately causing a reduction in plant growth and development. However, the use of microbes and growth regulators enhances plant growth and development as well as HM immobilization into the cell wall and hinders their entry into the food chain. Thus, the integrated use of bacterial consortium along with exogenously applied jasmonic acid (JA) mitigates the adverse effect of metal stress, ultimately reducing the metal mobility into roots by soil. Therefore, the current study was conducted to check the impact of Cd-tolerant bacteria and JA on the growth, nutrient status, and uptake of Cd in the cauliflower (Brassica oleracea). Our results demonstrated that increasing concentrations of Cd negatively affect growth, physiological, and biochemical attributes, while the use of a bacterial consortium (SS7 + SS8) with JA (40 mu mol L-1) significantly improved chlorophyll contents, stem fresh and dry biomass (19.7, 12.7, and 17.3%), root length and root fresh and dry weights (28.8, 15.2, and 23.0%), and curd fresh and dry weights and curd diameter (18.7, 12.6, and 15.1%). However, the maximum reduction in soil Cd, roots, and curd uptake was observed by 8, 11, and 9.3%, respectively, under integrated treatment as compared to the control. Moreover, integrating bacterial consortium and JA improves superoxide dismutase (SOD) (16.79%), peroxidase dismutase (POD) (26.96%), peroxidase (POX) (26.13%), and catalase (CAT) (26.86%). The plant nitrogen, phosphorus, and potassium contents were significantly increased in soil, roots, and curd up to 8, 11, and 9.3%, respectively. Hence, a consortium of Klebsiella strains in combination with JA is a potential phytostabilizer and it reduces the uptake of Cd from soil to roots to alleviate the adverse impact on cauliflower's growth and productivity.

期刊论文 2024-08-07 DOI: 10.3389/fmicb.2024.1444374

This study investigated the change in the microbiome of tomato rhizosphere soils after the invasion of Ralstonia solanacearum and analyzed the correlation between microbes and soil physicochemical properties. Diversity analyses of the bacteria in healthy and diseased rhizosphere soil samples (HRS and DRS) revealed that HRS had a higher species diversity and were compositionally different from DRS (P <= 0.05). Substantial differences in the relative abundance of Actinobacteria (37.52% vs 28.96%, P <= 0.05) and Proteobacteria (29.20% vs 35.59%, P <= 0.05) were identified in HRS and DRS, respectively. Taxonomic composition analysis showed ten differentially abundant genera, and seven of them (Gaiella, Roseisolibacter, Solirubrobacter, Kribbella, Acidibacter, Actinomarinicola, and Marmoricola) are more abundant in HRS. Soil pH and enzyme activities were negatively correlated with the abundance of R. solanacearum. The contents of total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (alkaline N), available phosphorus (AP), available potassium (AK), NO3-N(NN), NH4(+)-N (AN), and organic matter (OM) were all significantly increased in DRS. The composition and richness of protozoa in the samples show significant differences. Cephalobus, Acrobeles, Heteromita, norank_Tylenchida, and Rotylenchulus were enriched in DRS. Microbial interaction networks revealed that the HRS networks were more complex than the DRS networks. Overall, the results of this study demonstrate that healthy soil has a more complex microbial community structure and higher enzyme activity, and the invasion of R. solanacearum damages the soil microbial system. IMPORTANCE How does the invasion of Ralstonia solanacearum affect tomato rhizosphere bacteria and protozoa? Which microbial changes can affect the growth of R. solanacearum? To date, most research studies focus on bacteria, with little research on protozoa, and even less on the synergistic effects between protozoa and bacteria. Here, we analyzed the correlation between tomato rhizosphere bacterial and protozoan communities and soil physicochemical properties during the invasion of R. solanacearum. We found that the diversity and abundance of rhizosphere microorganisms in healthy rhizosphere soil samples (HRS) were significantly higher than those in diseased rhizosphere soil samples (DRS), and there were significant changes in soil pH and enzyme activity. Overall, in this study, the analysis of microbial changes during the invasion of R. solanacearum provides a theoretical basis for the prevention and control of bacterial wilt.

期刊论文 2024-02-28 DOI: 10.1128/msphere.00665-23

Soil acts as a crucial reservoir for both nutrients and microorganisms, hosting a wide range of microbial communities essential for ecosystem health. Particularly noteworthy are the interactions between plants and these microbes in the rhizosphere, as they actively contribute to sustaining plant well-being and fortifying plants against environmental pressures. Challenges, such as drought and salinity, pose significant threats to agricultural output and overall plant development. Therefore, it is imperative to explore the intricate mechanisms of stress responses to develop strategies to bolster plant resilience. Plant growth-promoting rhizobacteria (PGPR) offer a promising avenue for alleviating stress-induced damage in plants. Recent progress in the understanding of drought stress has shed light on the physiological and biochemical reactions within plants, emphasizing the critical role of abscisic acid (ABA) in stress mitigation. Similarly, advancements in research on salinity tolerance have elucidated the functions of ion transporters and stress signaling proteins. PGPRs play a crucial role in enhancing plant stress resilience through various mechanisms, including the regulation of ethylene levels, enhancement of nutrient absorption, and synthesis of hormones and enzymes. Utilizing the synergistic potential of plant-microbial interactions presents a promising strategy for tackling salinity and drought challenges in agriculture. Furthermore, PGPRs are instrumental in mitigating the effects of organic pollutants and heavy metals via mechanisms such as ACC deaminase activity. Innovative approaches, such as constructed wetland systems, leverage plant-microbial interactions to enhance water quality by purging pollutants.

期刊论文 2024-01-01 DOI: 10.15835/nbha52414199 ISSN: 0255-965X

Plant-associated microbiomes are structured by environmental conditions and plant associates, both of which are being altered by climate change. The future structure of plant microbiomes will depend on the, largely unknown, relative importance of each. This uncertainty is particularly relevant for arctic peatlands, which are undergoing large shifts in plant communities and soil microbiomes as permafrost thaws, and are potentially appreciable sources of climate change feedbacks due to their soil carbon (C) storage. We characterized phyllosphere and rhizosphere microbiomes of six plant species, and bulk peat, across a permafrost thaw progression (from intact permafrost, to partially- and fully-thawed stages) via 16S rRNA gene amplicon sequencing. We tested the hypothesis that the relative influence of biotic versus environmental filtering (the role of plant species versus thaw-defined habitat) in structuring microbial communities would differ among phyllosphere, rhizosphere, and bulk peat. Using both abundance- and phylogenetic-based approaches, we found that phyllosphere microbial composition was more strongly explained by plant associate, with little influence of habitat, whereas in the rhizosphere, plant and habitat had similar influence. Network-based community analyses showed that keystone taxa exhibited similar patterns with stronger responses to drivers. However, plant associates appeared to have a larger influence on organisms belonging to families associated with methane-cycling than the bulk community. Putative methanogens were more strongly influenced by plant than habitat in the rhizosphere, and in the phyllosphere putative methanotrophs were more strongly influenced by plant than was the community at large. We conclude that biotic effects can be stronger than environmental filtering, but their relative importance varies among microbial groups. For most microbes in this system, biotic filtering was stronger aboveground than belowground. However, for putative methane-cyclers, plant associations have a stronger influence on community composition than environment despite major hydrological changes with thaw. This suggests that plant successional dynamics may be as important as hydrological changes in determining microbial relevance to C-cycling climate feedbacks. By partitioning the degree that plant versus environmental filtering drives microbiome composition and function we can improve our ability to predict the consequences of warming for C-cycling in other arctic areas undergoing similar permafrost thaw transitions.

期刊论文 2020-05-15 DOI: 10.3389/fmicb.2020.00796
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页