Vulnerability of peat plateaus to global warming was analyzed in northeastern European Russia. A laboratory experiment on artificial incubation of peat was carried out to analyze the resilience of organic matter of frozen peat bogs (palsas) to decomposition. The rate of mineralization of peat organic matter was calculated from data on the CO2 and CH4 emissions from the peat incubated at a temperature of +4 degrees C under artificial aerobic and anaerobic conditions during 1300 days. Peat samples were taken from the active layer (AL), transitional layer (TL), and permafrost layer (PL). The delta 13C and delta 15N isotopes and the C/N, O/C, and H/C ratios were determined as indicators of change in the decomposition rate of organic matter. By the 1300th day of the experiment under aerobic conditions, the total CO2 amount released from the analyzed samples (per 1 g of carbon) was 10.24-37.4 mg C g-1 (on average, 25.76 mg C g-1), while under anaerobic conditions, it was only 2.1-3.38 mg C g-1 (on average, 3.15 mg C g-1). The CH4 emission was detected only in the peat from the transitional layer in very small quantities. The incubation experiment results support the hypothesis that peat plateaus are resilient, especially under anaerobic conditions, regardless the ongoing climate warming.
Climate change in the northern circumpolar regions is rapidly thawing organic-rich permafrost soils, leading to the substantial release of dissolved CO2 and CH4 into river systems. This mobilization impacts local ecosystems and regional climate feedback loops, playing a crucial role in the Arctic carbon cycle. Here, we analyze the stable carbon (delta 13C) and radiocarbon (F14C) isotopic compositions of dissolved CO2 and CH4 in the Sagavanirktok and Kuparuk River watersheds on the North Slope, Alaska. By examining spatial and seasonal variations in these isotopic signatures, we identify patterns of carbon release and transport across the river continuum. We find consistent CO2 isotopic values along the geomorphological gradient, reflecting a mixture of geogenic and biogenic sources integrated throughout the watershed. Bayesian mixing models further demonstrate a systematic depletion in 13C and 14C signatures of dissolved CO2 sources from spring to fall, indicating increasing contributions of aged carbon as the active layer deepens. This seasonal deepening allows percolating groundwater to access deeper, older soil horizons, transporting CO2 produced by aerobic and anaerobic soil respiration to streams and rivers. In contrast, we observe no clear relationships between the 13C and 14C compositions of dissolved CH4 and landscape properties. Given the reduced solubility of CH4, which facilitates outgassing and limits its transport in aquatic systems, the isotopic signatures are likely indicative of localized contributions from streambeds, adjacent water saturated soils, and lake outflows. Our study illustrates that dissolved greenhouse gases are sensitive indicators of old carbon release from thawing permafrost and serve as early warning signals for permafrost carbon feedbacks. It establishes a crucial baseline for understanding the role of CO2 and CH4 in regional carbon cycling and Arctic environmental change.
Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002-2014, the strongest CO2 sink was located in western Canada (median: -52 g C m-2 y-1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: -5 to -9 g C m-2 y-1). Eurasian regions had the largest median wetland methane fluxes (16-18 g CH4 m-2 y-1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects. Climate change and the consequent thawing of permafrost threatens to transform the permafrost region from a carbon sink into a carbon source, posing a challenge to global climate goals. Numerous studies over the past decades have identified important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Overall, studies show high wetland methane emissions and a small net carbon dioxide sink strength over the terrestrial permafrost region but results differ among modeling and upscaling approaches. Continued and coordinated efforts among field, modeling, and remote sensing communities are needed to integrate new knowledge from observations to modeling and predictions and finally to policy. Rapid warming of northern permafrost region threatens ecosystems, soil carbon stocks, and global climate targets Long-term observations show importance of disturbance and cold season periods but are unable to detect spatiotemporal trends in C flux Combined modeling and syntheses show the permafrost region is a small terrestrial CO2 sink with large spatial variability and net CH4 source
This study explores the carbon stability in the Arctic permafrost following the sea-level transgression since the Last Glacial Maximum (LGM). The Arctic permafrost stores a significant amount of organic carbon sequestered as frozen particulate organic carbon, solid methane hydrate and free methane gas. Post-LGM sea-level transgression resulted in ocean water, which is up to 20 degrees C warmer compared to the average annual air mass, inundating, and thawing the permafrost. This study develops a one-dimensional multiphase flow, multicomponent transport numerical model and apply it to investigate the coupled thermal, hydraulic, microbial, and chemical processes occurring in the thawing subsea permafrost. Results show that microbial methane is produced and vented to the seawater immediately upon the flooding of the Arctic continental shelves. This microbial methane is generated by the biodegradation of the previously frozen organic carbon. The maximum seabed methane flux is predicted in the shallow water where the sediment has been warmed up, but the remaining amount of organic carbon is still high. It is less likely to cause seabed methane emission by methane hydrate dissociation. Such a situation only happens when there is a very shallow (similar to 200 m depth) intra-permafrost methane hydrate, the occurrence of which is limited. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change. Arctic permafrost stores similar to 1,700 billion tons of organic carbon. If just a fraction of that melts, the escaping methane would become one of the world's largest sources of greenhouse gas and would severely impact the environment and the climate. Over the last similar to 18,000 years, a quarter of the stored organic carbon in the Arctic permafrost has been flooded by the rising, warm seas. This has melted the ice and degraded the permafrost. But what happens to the carbon pools? This study investigates the stability of the carbon in the Arctic permafrost following the flooding using a newly developed numerical model. Results show that microbial methane is generated and emitted to the seawater immediately following the flooding. This methane is produced by the biodegradation of the previously frozen organic carbon near the seafloor. The maximum methane emission is predicted in the shallow water near the coast where the sediment has been warmed up, but the remaining amount of organic carbon is still high. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change. A numerical model is developed to simulate the coupled thermal, hydraulic, microbial and chemical processes in the thawing subsea permafrost The biodegradation of the ancient organic carbon in the thawing subsea permafrost results in seabed microbial methane emission Seabed methane emission is less likely to be caused by methane hydrate dissociation at the Arctic continental shelves
Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO2 and CH4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation-conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (similar to 1200 mmol CO2 m-2 yr-1 and similar to 250 mmol CH4 m-2 yr-1) compared to ponds with no active shore erosion (similar to 30 mmol m-2 yr-1 for both GHG). Although most GHGs emitted as CO2 and CH4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.
Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2), mid-April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13-59 g C m(-2) year(-1)) and stronger sources of CH4 (11-14 g CH4 m(-2) from similar to April to October). The interannual variability of net ecosystem exchange was high, approximately +/- 100 g C m(-2) year(-1), or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (<= 1 km(2)), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate.
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 degrees C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (similar to 100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USC alpha). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 degrees C), T25 (25 degrees C), and T35 (35 degrees C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 degrees C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Carbon dioxide (CO2) and methane (CH4) emissions from freshwater ecosystems are predicted to increase under climate warming. However, freshwater ecosystems in glacierized regions differ critically from those in non-glacierized regions. The potential emissions of CO2 and CH4 from glacierized environments in the Tibetan Plateau (TP) were only recently recognized. Here, the first direct measurement of CO2 and CH4 emission fluxes and isotopic composition during the spring of 2022 in 13 glacial lakes of the TP revealed that glacial lakes were the previously overlooked CO2 sinks due to chemical weathering in glacierized regions. The daily average CO2 flux was -5.1 & PLUSMN; 4.4 mmol m(-2) d(-1), and the CO2 consumption could reach 38.9 Gg C-CO2 yr(-1) by all glacial lakes in the TP. This consumption might be larger during summer when glaciers experience intensive melting, highlighting the importance of CO2 uptake by glacial lakes on the global carbon cycle. However, the studied glacial lakes were CH4 sources with total emission flux ranging from 4.4 & PLUSMN; 3.3 to 4082.5 & PLUSMN; 795.6 & mu;mol m(-2) d(-1). The large CH4 range was attributed to ebullition found in three of the glacial lakes. Low dissolved organic carbon concentrations and CH4 oxidation might be responsible for the low CH4 diffusive fluxes of glacial lakes without ebullition. In addition, groundwater input could alter CO2 and CH4 emissions from glacial lakes. CH4 in glacial lakes probably had a thermogenic source; whereas CO2 was influenced mainly by atmospheric input, as well as organic matter remineralization and CH4 oxidation. Overall, glacial lakes in the TP play an important role in the global carbon cycle and budget, and more detailed isotopic and microbial studies are needed to constrain the contributions of different pathways to CO2 and CH4 production, consumption and emissions.
Glacier foreland soils are known to be essential methane (CH4) consumers. However, global warming and increased glacier meltwater have turned some foreland meadows into swamp meadows. The potential impact of this change on the function of foreland soils in methane consumption remains unclear. Therefore, we collected Tibetan glacier foreland soils in the non-melting season from typical microtopography in swamp meadows (hummock and hollow). Three soil moisture conditions (moist, saturated, and submerged) were set by adding glacier runoff water. Soil samples were then incubated in the laboratory for two weeks at 10 center dot C and 20 center dot C. About 5 % of 13CH4/12CH4 was added to the incubation bottles, and daily methane concentrations were measured. DNA stable isotope probing (DNA-SIP) and highthroughput sequencing were combined to target the active methanotroph populations. The results showed that type Ia methanotrophs, including Crenothrix, Methylobacter, and an unclassified Methylomonadaceae cluster, actively oxidized methane at 10 center dot C and 20 center dot C. There were distinct responses of methanotrophs to soil moisture rises in hummock and hollow soils, resulting in different methane oxidation potentials. In both hummock and hollow soils, the methane oxidation potential was positively correlated with temperature. Furthermore, saturated hummock soils exhibited the highest methane oxidation potential and methanotroph populations, while submerged hollow soils had the lowest. This suggests that the in-situ hummock soils, generally saturated with water, are more essential than in-situ hollows, typically submerged in water, for alleviating the global warming potential of swamp meadows in the Tibetan glacier foreland during the growing season.