共检索到 8

Meteorites provide access to information on the formation and evolution of planetary bodies which is otherwise difficult to study. The unique nature of these samples and their relative scarcity means that non-destructive analysis techniques are needed to study their properties. This paper uses the laser ultrasound technique spatially resolved acoustic spectroscopy to non-destructively determine both the crystal orientation and the single crystal elastic constants (Cif) of a sample of the Gibeon meteorite. There are no published values to directly compare the results of this study, as non-destructive measurements of the single crystal elasticity on granular material have not been possible. Therefore, comparisons with theoretical values for man-made iron-nickel alloys are given showing the Cif values are in the expected range. There are studies providing bulk elastic properties of meteorites, and so calculated bulk properties derived from the single crystal elasticity measurements are compared and also agree well.

期刊论文 2025-06-01 DOI: 10.1016/j.scriptamat.2025.116666 ISSN: 1359-6462

Despite being essentially water-free, nominally anhydrous minerals such as plagioclase and pyroxene represent the biggest reservoir of water in most lunar rocks due to their sheer abundance. Apatite, which incorporates F, Cl, and OH into its mineral structure as essential crystal components, on the other hand, is the only other volatile-bearing phase common in lunar samples. Here, we present the first coordinated study of volatiles (e.g., H2O, Cl, F, and S) in nominally anhydrous minerals combined with isotopic measurements in apatite from the ancient lunar basalt fragments from meteorite Miller Range (MIL) 13317. Apatite in MIL 13317 basalt contains similar to 2000 ppm H2O and has an elevated SD values (+ 523-737 parts per thousand), similar to Apollo mare basalts, but has high delta Cl-37 values (+ 29-36 parts per thousand), similar to apatite found in several KREEP-rich samples. MIL 13317 is unique compared with other lunar basalts; it has both elevated SD and delta Cl-37 values currently only observed in highlands sample 79215 (a granulitic impactite). Based on measurements of H2O in nominally anhydrous minerals and in apatite, the source magma of MIL 13317 basalt is estimated to contain similar to 130-330 ppm H2O. Assuming reasonable levels of partial melting of the lunar mantle and magmatic degassing during eruption of the basalt, the Moon contained at least one reservoir with < 100 ppm H2O, a delta D value of < 0 parts per thousand similar to carbonaceous chondrites, and extensively fractionated Cl isotopes prior to 4.332 Gyr, the crystallization age of the MIL 13317 basalt.

期刊论文 2024-12-20 DOI: 10.1016/j.chemgeo.2024.122417 ISSN: 0009-2541

Preferential enrichment of the heavier isotopes of moderately volatile elements (MVE) in samples from asteroids and the Moon have been attributed to volatile loss during the formation and differentiation of their parent bodies. Analogs for planetary feedstocks include the howardite-eucrite-diogenite meteorites, which originate from a differentiated planetesimal or planetesimals, likely including (4) Vesta. Complications arise in the interpretation of volatile depletion in these meteorites, however, due to post-crystallization processes including metamorphism and later impacts that acted upon them. We present new coupled Cu and Zn isotope data for a suite of eucrites that, when combined with published data, show significant ranges (delta 65Cu = -1.6 to +0.9%o; delta 66Zn = -7.8 to +13.5%o). Exclusion of eucrites that have been affected by metamorphism, impact contamination or surface condensation of isotopically light Zn and Cu leads to a range of 'pristine' compositions (delta 66Zn = +1.1 +/- 2.3%o; delta 65Cu = +0.5 +/- 0.5%o; 2 St. Dev.), implying inherent MVE variability within the eucrite parent body. As low-mass differentiated bodies, Vesta and the Moon represent endmembers in planet evolution. For the Moon, extensive volatile loss can be explained by a cataclysmic giant impact origin and later magma ocean crystallization. In contrast the parent body of eucrite meteorites likely heterogeneously lost volatile elements and compounds during differentiation. Vesta as the potential source of eucrite meteorites offers an important endmember composition for likely feedstocks to planets, representing the remaining vestige of what was likely to have been a larger population of differentiated objects in the inner Solar System shortly after nebula accretion. Mixing contributions of non-carbonaceous and carbonaceous chondrites constrained by nucleosynthetic Zn isotope anomalies suggests a significant fraction of Earth's accretion could have come from volatile-poor and differentiated planetary feedstocks that would have had limited effects on the bulk silicate Earth (BSE) Zn isotope composition. Furthermore, volatile-poor feedstocks cannot explain the BSE Cu isotope composition, which instead may have been modified by terrestrial core formation. Pristine eucrites offer key insights into early planetesimal differentiation and the role of volatile loss on small mass bodies within nascent solar systems.

期刊论文 2024-07-01 DOI: 10.1016/j.epsl.2024.118740 ISSN: 0012-821X

We conducted a petrologic study of apatite within eight unbrecciated, non-cumulate eucrites and two monomict, non-cumulate eucrites. These data were combined with previously published data to quantify the abundances of F, Cl, and H2O in the bulk silicate portion of asteroid 4 Vesta (BSV). Using a combination of apatite-based melt hygrometry/chlorometry and appropriately paired volatile/refractory element ratios, we determined that BSV has 3.0-7.2 ppm F, 0.39-1.8 ppm Cl, and 3.6-22 ppm H2O. The abundances of F and H2O are depleted in BSV relative to CI chondrites to a similar degree as F and H2O in the bulk silicate portion of the Moon. This degree of volatile depletion in BSV is similar to what has been determined previously for many moderately volatile elements in 4 Vesta (e.g., Na, K, Zn, Rb, Cs, and Pb). In contrast, Cl is depleted in 4 Vesta by a greater degree than what is recorded in samples from Earth or the Moon. Based on the Clisotopic compositions of eucrites and the bulk rock Cl-/F ratios determined in this study, the eucrites likely formed through serial magmatism of a mantle with heterogeneous delta Cl-37 and Cl/F, not as extracts from a partially crystallized global magma ocean. Furthermore, the volatile depletion and Cl-isotopic heterogeneity recorded in eucrites is likely inherited, at least in part, from the precursor materials that accreted to form 4 Vesta and is unlikely to have resulted solely from degassing of a global magma ocean, magmatic degassing of eucrite melts, and/or volatile loss during thermal metamorphism. Although our results can be reconciled with the past presence of wide-scale melting on 4 Vesta (i.e., a partial magma ocean), any future models for eucrite petrogenesis involving a global magma ocean would need to account for the preservation of a heterogeneous eucrite source with respect to Cl/F ratios and Cl isotopes. Published by Elsevier Ltd.

期刊论文 2021-12-01 DOI: 10.1016/j.gca.2021.08.021 ISSN: 0016-7037

We calculated the cross sections of photolysis of OH, LiO, NaO, KO, HCl, LiCl, NaCl, KCl, HF, LiF, NaF, and KF molecules using quantum chemistry methods. The maximal values for photolysis cross sections of alkali metal monoxides are on the order of 10(-18) cm(2). The lifetimes of photolysis for quiet Sun at 1 astronomical unit are estimated as 2.0 x 10(5), 28, 5, 14, 2.1 x 10(5), 225, 42, 52, 2 x 10(6), 35 400, 486, and 30 400 s for OH, LiO, NaO, KO, HCl, LiCl, NaCl, KCl, HF, LiF, NaF, and KF, respectively. We performed a comparison between values of photolysis lifetimes obtained in this work and in previous studies. Based on such a comparison, our estimations of photolysis lifetimes of OH, HCl, and HF have an accuracy of about a factor of 2. We determined typical kinetic energies of main peaks of photolysis-generated metal atoms. Impact-produced LiO, NaO, KO, NaCl, and KCl molecules are destroyed in the lunar and Hermean exospheres almost completely during the first ballistic flight, while other considered molecules are more stable against destruction by photolysis.

期刊论文 2020-01-08 DOI: 10.1051/0004-6361/201936230 ISSN: 0004-6361

The isotopes of chlorine (Cl-37 and Cl-35) are highly fractionated in lunar samples compared to most other Solar System materials. Recently, the chlorine isotope signatures of lunar rocks have been attributed to large-scale degassing processes that occurred during the existence of a magma ocean. In this study we investigated how well a suite of lunar basalts, most of which have not previously been analyzed, conform to previous models. The Cl isotope compositions (delta Cl-37 (parts per thousand) = [(Cl-37/Cl-35(sample)/Cl-37/Cl-35(SMOC)) - 1] x 1000, where SMOC refers to standard mean ocean chloride) recorded range from similar to+7 to +14 parts per thousand (Apollo 15), +10 to +19 parts per thousand (Apollo 12), +9 to +15 parts per thousand (70017), +4 to +8 parts per thousand (MIL 05035), and +15 to +22 parts per thousand (Kalahari 009). The Cl isotopic data from the present study support the mixing trends previously reported by Boyce et al. (2015) and Barnes et al. (2016), as the Cl isotopic composition of apatites are positively correlated with bulk-rock incompatible trace element abundances in the low-Ti basalts, inclusive of low-Ti and KREEP basalts. This trend has been interpreted as evidence that incompatible trace elements, including Cl, were concentrated in the urKREEP residual liquid of the lunar magma ocean, rather than the mantle cumulates, and that urKREEP Cl had a highly fractionated isotopic composition. The source regions for the basalts were thus created by variable mixing between the mantle (Cl-poor and relatively unfractionated) and urKREEP. The high-Ti basalts show much more variability in measured Cl isotope ratios and scatter around the trend formed by the low-Ti basalts. Most of the data for lunar meteorites also fits the mixing of volatiles in their sources, but Kalahari 009, which is highly depleted in incompatible trace elements, contains apatites with heavily fractionated Cl isotopic compositions. Given that Kalahari 009 is one of the oldest lunar basalts and ought to have been derived from very early-formed mantle cumulates, a heavy Cl isotopic signature is likely not related to its mantle source, but more likely to magmatic or secondary alteration processes, perhaps via impact-driven vapor metasomatism of the lunar crust. (C) 2019 The Authors. Published by Elsevier Ltd.

期刊论文 2019-12-01 DOI: 10.1016/j.gca.2018.12.032 ISSN: 0016-7037

Context. The Moon has a tenuous exosphere consisting of atoms that are ejected from the surface by energetic processes, including hypervelocity micrometeoritic impacts, photon-stimulated desorption by UV radiation, and ion sputtering. Aims. We calculate the vapor and neutral Na production rates on the Moon caused by impacts of meteoroids in the radius range of 5-100 mu m. We considered a previously published dynamical model to compute the flux of meteoroids at the heliocentric distance of the Moon. Methods. The orbital evolution of dust particles of different sizes is computed with an N-body numerical code. It includes the effects of Poynting-Robertson drag, solar wind drag, and planetary perturbations. The vapor production rate and the number of neutral atoms released in the exosphere of the Moon are computed with a well-established formulation. Results. The result shows that the neutral Na production rate computed following our model is higher than previous estimates. This difference can be due to the dynamical evolution model that we used to compute the flux and also to the mean velocity, which is 15.3 kms(-1) instead of 12.75 km s(-1) as reported in literature. Conclusions. Until now, the micrometeoritic impacts have been considered a negligible source for the release of neutral sodium atoms into the exosphere compared to other mechanisms, but according to our calculations, the contribution may be 8% of the photo-stimulated desorption at the subsolar point, becoming similar in the dawn and dusk regions and dominant on the night side.

期刊论文 2013-03-01 DOI: 10.1051/0004-6361/201220541 ISSN: 1432-0746

The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 nanofossils were too small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.

期刊论文 2007-01-01 DOI: 10.1117/12.742289 ISSN: 0277-786X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页