共检索到 33

Legumes are a vital component of agriculture, providing essential nutrients to both humans and soil through their ability to fix atmospheric nitrogen. However, the production of legume crops is often hindered by various biotic and abiotic stresses, limiting their yield and nutritional quality of crops by damaging plant tissues, which can result in lower protein content, reduced levels of essential vitamins and minerals, and compromised seed quality. This review discusses the recent advancements in technologies that are revolutionizing the field of legume crop improvement. Genetic engineering has played a pivotal role enhancing legume productivity. Through the introduction of genes encoding for enzymes involved in nitrogen fixation, leading to higher yields and reducing the reliance on synthetic fertilizers. Additionally, the incorporation of genes conferring disease and pest resistance has significantly reduced the need for chemical pesticides, making legume cultivation more sustainable and environmentally friendly. Genome editing technologies, such as CRISPR-Cas9, have opened new avenues for precision breeding in legumes. Marker-assisted selection and genomic selection are other powerful tools that have accelerated the breeding process. These techniques have significantly reduced time and resources required to develop new legume varieties. Finally, advancement technologies for legume crop improvement are aid and enhancing the sustainability, productivity, and nutritional quality of legume crops.

期刊论文 2025-12-31 DOI: 10.1080/23311932.2024.2446652 ISSN: 2331-1932

Thallium (Tl) is a highly toxic heavy metal. It is widely spread in soil. However, the effects of Tl on soil invertebrates have received limited attention. Eisenia fetida, a sensitive and widely used bioindicator, is important in assessing ecological risks in soil ecosystems. It is conceivable that the stress resistance of E. fetida may vary depending on its diet, potentially influencing the assessment of ecological risks associated with contaminants. This study aims to assess the toxicological effects of Tl in soil on E. fetida, focusing on mechanisms involving Tlinduced oxidative stress, disruption of antioxidant defenses, and diet-mediated differences in physiological tolerance. E. fetida was nourished with yogurt waste or cow dung as their primary food source before exposure. The research showed a significant correlation between the increase in soil Tl levels and its bioaccumulation in E. fetida. The highest Tl accumulation was observed in E. fetida fed with yogurt waste (5.55 mu g g-1), exceeding those fed with cow dung (4.77 mu g g-1). Tl inhibited the growth of E. fetida and induced oxidative stress responses. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) initially increased at lower concentrations and earlier time points but were suppressed at higher Tl concentrations and longer exposures. In contrast, glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities were generally elevated, especially in yogurt waste-fed worms. Additionally, reduced glutathione (GSH) levels declined over time, while malondialdehyde (MDA) levels increased significantly, indicating lipid peroxidation and oxidative damage. Furthermore, the Integrated Biomarker Response index indicated that cow dung-fed E. fetida exhibited a higher level of toxic stress when compared to those fed with yogurt waste. In a comparative analysis, despite accumulating more Tl, yogurt waste-fed E. fetida exhibited a lower overall toxic response than their cow dung-fed counterparts. Our results suggest that the diet, specifically yogurt waste, can enhance Tl tolerance in E. fetida. Hence, when assessing the ecological risk of Tl concerning earthworms, it is imperative to consider their dietary sources to increase the scientific validity of evaluation results.

期刊论文 2025-09-01 DOI: 10.1016/j.apsoil.2025.106246 ISSN: 0929-1393

Arsenic (As) in soil, such as mining waste, is a concern for communities with legacy contamination. While the chronic health effects of As exposure through drinking water are well documented, the association between As in soil and population-wide health impacts is complex, involving factors like soil accessibility, soil properties, and exposure modes. This review summarizes evidence of associations between As in soil and human health, as well as biomarker and bioaccessibility evidence of exposure pathways. Fourteen studies were included in the final analysis. Reviewed studies reported associations between As in soil and birth outcomes, neurological effects, DNA damage, and cancer. Some of these health outcomes are not known to be linked to As in drinking water and were reported over a range of soil concentrations, indicating inconsistencies. Higher soil As concentrations are associated with higher As in human biospecimens, suggesting direct and indirect soil ingestion as primary exposure pathways. The subpopulations more likely to be exposed include younger children and those involved in soil-based activities. Future research should focus on standardized epidemiological studies, longitudinal studies, soil exposure and mitigating factors, combined exposure biomarker studies, the behavior of the different As species, soil dose related to bioavailability/bioaccessibility, and effects with other elements.

期刊论文 2025-05-14 DOI: 10.3390/environments12050161

Despite the widespread presence of heavy metals (HMs) in contaminated soils, there is a limiting understanding of physiological and cellular adaptive mechanisms of castor bean (Ricinus communis L.) under lead (Pb) contaminated soils of Chakera having enduring history of wastewater irrigation. This gap in knowledge hinders the development of effective strategies for managing soil pollution and protecting agricultural productivity in areas exposed to wastewater irrigation. Therefore, current pot study was conducted on two castor bean genotypes (NIAB-2020 and DS-30) on Pb contaminated soils of Chakera in glasshouse for a period of 120 days. Results showed that physiological indicators decreased under stressed conditions in NIAB-2020 and DS-30, suggesting impaired plant development. Electrolyte leakage (EL) increased in stressed plants indicating damage to cell membrane due to oxidative damage. Biochemically, the levels of superoxide dismutase (SOD) and peroxidase (POD) decreased whereas catalase (CAT) and ascorbate peroxidase (APX) showed an increase in both castor bean genotypes to mitigate oxidative stress. In similar pattern, both genotypes exhibited a reduction in total soluble proteins (TSP) and total free amino acids (TFA), while conversely total soluble sugars (TSS) and total phenolic contents (TPC) increased under stress conditions. Significant correlation was observed between various physiological, biochemical, and antioxidant enzyme responses, indicating their role as stressed biomarkers on Pb contaminated soils. Overall, NIAB-2020 outperformed DS-30 in terms of physiological and biochemical adaptations, evidencing superior adaptive approach. However, future field trials are compulsory to validate the findings of the study.

期刊论文 2025-05-01 DOI: 10.1007/s00128-025-04060-7 ISSN: 0007-4861

This study investigated the sub-lethal effects of four commercial fungicides-two foliar (Amistar (R) Xtra and Mirador (R)) and two ear fungicides (Prosaro (R) and Icarus (R))-applied alone and in combination to wheat crops on caged earthworms (Eisenia fetida). We measured biomarkers that included detoxification responses (glutathione S-transferase, GST), oxidative stress levels (lipid peroxidation, LPO, and catalase, CAT), DNA damage (comet assay), energy reserves (lactate dehydrogenase, LDH), and immune response (lysozyme activity, LYS). The absence of significant differences in catalase and lipid peroxidation levels suggested no oxidative stress due to fungicide exposure. However, the foliar fungicide Amistar (R) Xtra induced the highest GST activity and DNA fragmentation, suggesting synergistic effects between its active ingredients and undisclosed co-formulants. Similar effects observed with the Amistar (R) Xtra-Prosaro (R) mixture confirmed the greater toxicity of Amistar (R) Xtra. This study provides novel insights into the sub-lethal effects of single and combined commercial fungicides on a standard toxicity test organism, shedding light on the ecological implications of fungicide use in agroecosystems and reinforcing the need for pesticide reduction.

期刊论文 2025-03-14 DOI: 10.3390/toxics13030209

In recent years, there has been increasing interest in the study of extremophilic microorganisms, which include halophiles and halotolerants. These microorganisms, able to survive and thrive optimally in a wide range of environmental extremes, are polyextremophiles. In this context, one of the main reasons for studying them is to understand their adaptative mechanisms to stress caused by extreme living conditions. In this paper, a fungal strain Penicillium chrysogenum P13, isolated from saline soils around Pomorie Lake, Bulgaria, was used. The effect of elevated concentrations of sodium chloride on the growth and morphology as well as on the physiology of the model strain was investigated. P. chrysogenum P13 demonstrated high tolerance to NaCl, showing remarkable growth in liquid and agar media. In order to establish the relationship between salt- and oxidative stress, changes in the cell biomarkers of oxidative stress, such as oxidatively damaged proteins, lipid peroxidation, and levels of reserve carbohydrates of the studied strain were evaluated. The involvement of antioxidant enzyme defense in the adaptive strategy of the halotolerant strain against elevated NaCl concentrations was investigated.

期刊论文 2025-03-07 DOI: 10.3390/molecules30061196

The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L- 1 ) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L. TMX poisoning exacerbates the nuclear and membrane damage, whereas an increment in the oxidative stress markers like hydrogen peroxide (H2O2), superoxide anions (O2- ) and malondialdehyde (MDA) contents has been observed. The significance of phytohormone SA in mitigating TMX toxicity by enhancing the growth, and antioxidant capacities of B. juncea seedlings is not well documented. Salicylic acid priming to these TMX-exposed seedlings maximizes the germination potential by 34%, and root, shoot length by 86.9% and 41.5%, whereas, minimizing the levels of oxidative stress indicators such as H2O2 by 34.8%, O 2- by 26.9% and amounts of MDA by 45.6% and EL (electrolyte leakage) contents by 22.7% under 1 mM of SA. Also, an increment in the activity of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), peroxidase (POD), and catalase (CAT) by 122.1%, 186%, 39%, 82.61%, 40.02%, 75.6% and 59.5% was observed when TMX exposed seeds were supplemented with the highest SA (1 mM) concentration. Whereas, an upregulation in the gene expressions of enzymatic antioxidants was assessed as well as a swift decrease in the RBOH1 (respiratory burst oxidase1) gene expression was observed under the subsequent SA supplementation. Thus, the results effectively address the ameliorative potentials of exogenously applied SA in order to maximize the growth and development, by mediating osmotic adjustments, and antioxidant potentials in B. juncea L.

期刊论文 2025-03-01 DOI: 10.1016/j.envpol.2024.125616 ISSN: 0269-7491

Within an identical soil environment, various pesticides may be commonly identified, but their collective toxicological traits have not been thoroughly investigated. This research sought to elucidate the potential consequences of concurrent exposure to multiple pesticides on soil organisms, with a specific emphasis on examining alterations in transcript and enzyme levels induced by the co-presence of acetamiprid (ACE) and tetraconazole (TET) in earthworms (Eisenia fetida). The results indicated that the joint presence of ACE and TET exhibited an acute synergistic impact on the organisms. Notably, there was a significant elevation in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), coupled with a substantial suppression of caspase-9 and caspase-3 contents observed in the majority of both individual and combined groups. These findings suggested the occurrence of oxidative stress and cell death. Furthermore, the study revealed a substantial up-regulation of three genes (gst, sod, and crt) and down-regulation of one gene (mt) after exposure to individual pesticides and their mixtures. This pointed towards dysregulation of detoxification processes and oxidative damage. Collectively, the study underscored that the widespread application of these two pesticides might pose potential ecotoxicological risks to the soil ecosystem. In essence, these discoveries enriched our insights into the potential hazards linked to the simultaneous use of multiple pesticides in real-world settings. They underscored the significance of taking into account both synergistic effects and employing judicious pesticide management strategies to alleviate ecological impacts.

期刊论文 2025-03-01 DOI: 10.1016/j.ecolind.2025.113337 ISSN: 1470-160X

BackgroundCadmium (Cd) is one of the most important stress factors in plants, with its high mobility in soils, ease of uptake by plants and toxicity at low concentrations. Aluminum (Al) is another phytotoxic metal, the accumulation of which is a crucial agricultural complication for plants, especially in acidic soils. Methods and resultsIn this study, Bryophyllum daigremontianum clone plantlets were obtained from bulbiferous spurs of a mother plant and separated into four different groups and watered with Hoagland solution and mixtures containing 0, 50, 100, and 200 mu M of AlCl3 and CdCl2 each for 75 days. Control groups were maintained under the same conditions without Al and Cd treatment. To simulate acidic soil conditions typical of environments where Al toxicity is prevalent, the soil pH was adjusted to 4.5 by spraying the sulphuric acid (0.2%) with 2-day intervals after each irrigation day. After harvesting, growth parameters such as shoot length and thickness, root, shoot and leaf fresh and dry weights were measured, along with physiological parameters like mineral nutrient status, total protein, and photosynthetic pigment concentrations (chlorophyll a, b, a/b, total chlorophyll, and carotenoid) in both control and experimental groups of B. daigremontianum clones. In response to Al and Cd applications, the plant height, shoot thickness and carotenoid levels were declined, whereas the increments were found in leaf/shoot/root fresh weight, root dry weight, and total protein content. Moreover, differences in genomic alterations were investigated using 21 ISSR and 19 RAPD markers, which both have been used extensively as genetic markers to specify phylogenetic relationships among different cultivars as well as stress-dependent genetic alterations. RAPD primers were used due to their arbitrary sequences and the unknown genome sequence of the plant material used. In contrast, ISSR primers were preferred for a genome-wide genotoxic effect scan via non-arbitrary and more common genetic markers. Distinct types of band polymorphisms detected via RAPD and ISSR markers include band loss, and new band formation under a combination of Al and Cd stress. 17 ISSR and 14 RAPD primers generated clear electrophoretic bands. ConclusionThe study revealed that combined application of Al and Cd affect B. daigremontianum clones in terms of growth, physiology and genotoxicity related to the increasing concentrations.

期刊论文 2024-12-01 DOI: 10.1007/s11033-024-09936-1 ISSN: 0301-4851

The sub-lethal ecotoxicity of field-contaminated soils toward small soil fauna, such as enchytraeids, remains understudied but holds paramount importance in soil pollution assessment. This study employed Enchytraeus crypticus to evaluate metal-contaminated soils from a mining area across various levels of biological organization, including individual level responses (survival, growth, reproduction, Cd/Pb/Zn accumulation), cellular level effects (peroxidase (POD), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), acetylcholinesterase (AChE), lipid peroxidation malondialdehyde (MDA)) and genetic alterations (olive tail moment (OTM) and tail DNA%). The study revealed considerable Cd and Pb accumulation, exerting adverse impacts on the reproduction and growth of the enchytraeids after a 21-day exposure. Changes in cellular and genetic parameters occurred with increasing exposure concentration and duration, indicating heightened lipid peroxidation and DNA damage in enchytraeids. A noteworthy metal detoxification process, evident at a physical level, was identified in E. crypticus, , characterized by an initial escalation in toxicity followed by a subsequent decline. A distinctive complementary mechanism governing oxidative damage was detected in the enchytraeids, with an initial suppression of CAT activity, followed by inductions in SOD, POD, and GSH activity. Over the exposure duration, MDA content and DNA damage in the enchytraeids exhibited concentration-dependent shifts indicating their potential as efficient early-warning indicators for assessing the impact of Pb-Zn mining soils. This study contributes to a comprehensive understanding of the toxicological implications of metal-contaminated soils within the soil-enchytraeid framework.

期刊论文 2024-11-01 DOI: 10.1016/j.geoderma.2024.117069 ISSN: 0016-7061
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共33条,4页