共检索到 2

The leaching of excessive heavy metals (HMs) from lithium slag (LS) presents a significant challenge for its use in road engineering, necessitating the development of safe treatment methods. This study employed solidification/ stabilization (S/S) technology to develop a magnesium slag-lithium slag composite solidified material (MS-LS). The deformation and displacement characteristics of MS-LS during destruction were analyzed using digital image correlation (DIC). Various microscopic analytical techniques were used to analyze the stabilization mechanisms of MS-LS towards HMs. Results indicated that adding MS significantly improved the compressive strength and resistance to cracking of MS-LS. The minimum strength of the 8 %-MS group reached 2.7 MPa, meeting the strength requirements for subgrade stabilized soil in a first-class highway under heavy traffic load conditions. The development of strength is attributed to improved structural compactness from particle micro-gradation effects and the cementitious hardening action of C-S-H gel. HMs immobilization was achieved through directional adsorption at active sites within the calcium-rich mineral phase and interlayer adsorption within the C-S-H gel, complemented by a physical encapsulation mechanism that reduces HMs leaching. The immobilization rates of Be(II) and Pb(II) in the 8 %-MS group exceeded 95 %, demonstrating the effectiveness of MS in stabilizing these HMs in LS.

期刊论文 2025-05-10 DOI: 10.1016/j.jclepro.2025.145484 ISSN: 0959-6526

In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.4%, the cement content is 3%, and the magnesium slag content is 3% (AE4-C3M3), the strength of the formula reaches 4.21 MPa, which meets the requirements of heavy traffic load conditions in the construction of high-speed or main road base layers. Some reactive groups on the polymer side chains (-COOH) engage in bridging with Ca2+ and RCOO- to form a chemically bonded interpenetrating network structure, thereby enabling the acrylate emulsion to enhance the water damage resistance of the specimens. The notable improvement in strength is attributed to the film-forming and solidifying actions of AE, the binding and filling effects of C-S-H gel, and the reinforcing effect of straw fibers. FT-IR and TG-DSC analysis reveals the presence of polar electrostatic interactions between AE and the soil matrix. AE enhances the bonding among soil particles and facilitates the attachment of C-S-H gel onto the surfaces of the straw fibers, thereby increasing the strength and toughness of the material. The application of MS in conjunction with straw fibers within polymer-modified stabilized soil serves to promote the recycling of waste materials, thereby providing an environmentally friendly solution for the engineering application of solid waste.

期刊论文 2024-12-01 DOI: 10.3390/polym16243462
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页