When subjected to external loads from the ground and nearby construction, tunnel segmental lining joints are prone to damaging deformation. This can result in water leakage into tunnels, posing great safety risks. With this issue in mind, we conducted a series of full-scale tests to study the effects of external loads on the waterproofing performance of longitudinal joints. A customized rig for testing segmental joints was developed to assess the effect of loading magnitude, eccentricity, and loading-unloading-reloading cycles on waterproofing performance. Additionally, the relationship between joint force, sealing gasket deformation, and waterproofing pressure was investigated. The results indicate that: (1) the sealing gasket's compression rapidly decreases as external loads increase, which weakens the waterproofing capacity of the joint; (2) the watertightness limit dramatically decreases as the bending moment increases; (3) a loading-unloading-reloading cycle leads to degradation of the joint' s waterproofing performance. The findings of this study provide a reference for subsequent waterproofing design of segmental tunnel joints, helping ensure the safety of tunnels throughout their operational lifespans.
In shield tunneling, the joint is one of the most vulnerable parts of the segmental lining. Opening of the joint reduces the overall stiffness of the ring, leading to structural damage and issues such as water leakage. Currently, the Winkler method is commonly used to calculate structural deformation, simplifying the interaction between segments and soil as radial and tangential Winkler springs. However, when introducing connection springs or reduction factors to simulate the joint stiffness of segments, the challenge lies in determining the reduction coefficient and the stiffness of the springs. Currently, the hyperstatic reflection method cannot simulate the discontinuity effect at the connection of the tunnel segments, while the state space method overlooks the nonlinear interaction between the tunnel and the soil. Therefore, this paper proposes a numerical simulation method considering the interaction between the tunnel and the soil, which is subjected to compression rather than tension, and the discontinuity of the joints between the segments. The model structure and external load are symmetrical, resulting in symmetrical calculation results. This method is based on the soft soil layers and shield tunnel structures of the Shanghai Metro, and the applicability of the model is verified through deformation calculations using three-dimensional laser scanning point clouds of sections from the Shanghai Metro Line 5. When the subgrade reaction coefficient is 5000 kN/m3, the model can effectively simulate the deformation of operational tunnels. By adjusting the bending stiffness of individual connection springs, we investigate the influence of bending stiffness reduction on the bending moment, radial displacement, and rotational displacement of the ring. The results indicate that a decrease in joint bending stiffness significantly affects the mechanical response of the ring, and the extent and degree of this influence are correlated with the joint position and the magnitude of joint bending stiffness.