共检索到 2

Setting an expandable polystyrene (EPS) board on box culverts can reduce the vertical earth pressure (VEP) acting on the culvert roof. However, long-term backfill load will induce creep in both the EPS board and the surrounding soil, resulting in a change in the stress state of the culvert-soil system. A mechanical model for the long-term interaction of backfill-EPS board-box culvert was established, and theoretical formulas were derived for calculating the earth pressure around the culvert. Numerical simulation was employed to validate the accuracy of the proposed theoretical approach. Research indicates that, with EPS board, the VEP decreases rapidly then slightly increases with time and eventually approaches an asymptotic value, ultimately decreasing by 33%. However, the horizontal earth pressure (HEP) shows the opposite pattern and ultimately increases by 15%. The foundation contact pressure (FCP) increases nonlinearly and reaches a stable value, ultimately increasing by 10.2%. Without the EPS board, the VEP and HEP are significantly different from those with the EPS board. Although EPS boards can reduce the VEP on the culvert, attention should be paid to the variation of HEP caused by the creep of the EPS board and backfill.

期刊论文 2025-06-04 DOI: 10.3390/buildings15111954

The effectiveness of load-reduction techniques often diminishes due to creep behavior observed in geomaterials, as loess backfill is used, the load reduction rate of high-filled cut-and-cover tunnels (HFCCTs) after creep will decrease by 10.83%, posing a threat to the long-term stability of deeply buried structures such as HFCCTs. Therefore, a geotechnical solution is crucial to ensuring sustained effectiveness in load-reduction strategies over time. This study utilizes a finite-difference method to examine three promising measures for mitigating creep effects. Our analysis focuses on the time-dependent changes in earth pressure atop the cut-and-cover tunnel (CCT) and the internal distribution of cross-sectional forces, including bending moment, shear force, axial force, and displacement. Results indicate that the creep behavior of load-reduction materials significantly influences the internal force distribution. Furthermore, sustained load reduction is achieved when utilizing low-creep materials like dry sandy gravel as backfill soil, which needs to be borrowed from other sites. Additionally, integrating concrete wedges with load-reduction techniques facilitates a more uniform stress distribution atop CCTs.

期刊论文 2024-11-01 DOI: 10.1007/s40999-024-00989-8 ISSN: 1735-0522
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页