共检索到 5

The accumulation or landfill of lithium slag will contaminate the surrounding soil and water quality with residual sulfides and harmful elements, causing serious environmental hazards. This study aims to use Lithium slag (LS) as a sustainable alternative for silica flour (SF) in high-temperature cementing and examines the effects of this substitution on the microstructural and mechanical properties of cement pastes. The results show that an appropriate amount of LS can reduce the permeability of oil well cement and increase its high temperature compressive strength. Compared with pure paste (RS), the compressive strength of the sample replaced by 30 % LS increased by 87.8 % and the permeability decreased by 57.1 % after 28 days of high temperature curing. From the phase point of view, the samples supplemented with LS can form Xonotlite and Katoite with dense structure and high temperature stability. These hydration products can reduce the matrix porosity and permeability, increase the matrix density, and effectively improve the compressive strength of the cement pastes. In addition, the environmental effect analysis showed that the leaching toxicity and radioactivity of the sample did not exceed the standard requirements. This study provides a new direction for the sustainable utilization of LS resources, which not only combats the environmental pollution caused by LS accumulation, but also reduces the cost of cementing materials.

期刊论文 2025-06-01 DOI: 10.1016/j.jece.2025.116513 ISSN: 2213-2929

The leaching of excessive heavy metals (HMs) from lithium slag (LS) presents a significant challenge for its use in road engineering, necessitating the development of safe treatment methods. This study employed solidification/ stabilization (S/S) technology to develop a magnesium slag-lithium slag composite solidified material (MS-LS). The deformation and displacement characteristics of MS-LS during destruction were analyzed using digital image correlation (DIC). Various microscopic analytical techniques were used to analyze the stabilization mechanisms of MS-LS towards HMs. Results indicated that adding MS significantly improved the compressive strength and resistance to cracking of MS-LS. The minimum strength of the 8 %-MS group reached 2.7 MPa, meeting the strength requirements for subgrade stabilized soil in a first-class highway under heavy traffic load conditions. The development of strength is attributed to improved structural compactness from particle micro-gradation effects and the cementitious hardening action of C-S-H gel. HMs immobilization was achieved through directional adsorption at active sites within the calcium-rich mineral phase and interlayer adsorption within the C-S-H gel, complemented by a physical encapsulation mechanism that reduces HMs leaching. The immobilization rates of Be(II) and Pb(II) in the 8 %-MS group exceeded 95 %, demonstrating the effectiveness of MS in stabilizing these HMs in LS.

期刊论文 2025-05-10 DOI: 10.1016/j.jclepro.2025.145484 ISSN: 0959-6526

Building structures located in saline soil areas are more vulnerable to damage due to the combined effects of loading and sulfate erosion. Polypropylene fibers lithium slag concrete (PFLSC) exhibits good corrosion resistance, which can mitigate damage to building structures in saline soil areas. However, the eccentric compression behavior of PFLSC columns under sulfate erosion and external loading remains unclear. Therefore, in this study, an eccentric compression test was conducted on 10 PFLSC columns after exposure to combined sulfate erosion and external loading, with corrosion time and stress ratio as the research variables. The failure modes, load-displacement curves, failure loads, and strains of rebars were investigated. The results indicate that polypropylene fibers and lithium slag can effectively inhibit the corrosive effects of sulfates and significantly enhance the ductility and ultimate axial capacity of the specimens. Additionally, taking into account the prior load levels and the damage caused by sulfates to the concrete, a damage factor has been introduced to determine the strength of the concrete after undergoing loads and sulfate exposure. Ultimately, a model has been proposed to calculate the ultimate axial capacity of PFLSC columns under the coupled effects of loads and sulfuric acid. The calculated results showed excellent agreement with the corresponding experimental results. It provides reliable guidance for the durability design of PFLSC columns.

期刊论文 2025-05-01 DOI: 10.1016/j.kscej.2025.100236 ISSN: 1226-7988

This is an exercise to explore the concentration of lithium, lithium-7 isotope and the possible presence of black dirty ice on the lunar surface using spectral data obtained from the Clementine mission. The main interest in tracing the lithium and presence of dark ice on the lunar surface is closely related to future human settlement missions on the moon. We investigate the distribution of lithium and 7 Li isotope on the lunar surface by employing spectral data from the Clementine images. We utilized visible (VIS-NIR) imagery at wavelengths of 450, 750, 900, 950 and 1000 nm, along with near-infrared (NIR-SWIR) at 1100, 1250, 1500, 2000, 2600 and 2780 nm, encompassing 11 bands in total. This dataset offers a comprehensive coverage of about 80% of the lunar surface, with resolutions ranging from 100 to 500 m, spanning latitudes from 80 degrees S to 80 degrees N. In order to extract quantitative abundance of lithium, ground-truth sites were used to calibrate the Clementine images. Samples (specifically, 12045, 15058, 15475, 15555, 62255, 70035, 74220 and 75075) returned from Apollo missions 12, 15, 16 and 17 have been correlated to the Clementine VIS-NIR bands and five spectral ratios. The five spectral ratios calculated synthesize the main spectral features of sample spectra that were grouped by their lithium and 7 Li content using Principal Component Analysis. The ratios spectrally characterize substrates of anorthosite, silica-rich basalts, olivine-rich basalts, high-Ti mare basalts and Orange and Glasses soils. Our findings reveal a strong linear correlation between the spectral parameters and the lithium content in the eight Apollo samples. With the values of the 11 Clementine bands and the 5 spectral ratios, we performed linear regression models to estimate the concentration of lithium and 7 Li. Also, we calculated Digital Terrain Models (Altitude, Slope, Aspect, DirectInsolation and WindExposition) from LOLA-DTM to discover relations between relief and spatial distribution of the extended models of lithium and 7 Li. The analysis was conducted in a mask polygon around the Apollo 15 landing site. This analysis seeks to uncover potential 7 Li enrichment through spallation processes, influenced by varying exposure to solar wind. To explore the possibility of finding ice mixed with regolith (often referred to as `black ice'), we extended results to the entire Clementine coverage spectral indices, calculated with a library (350-2500 nm) of ice samples contaminated with various concentrations of volcanic particles.

期刊论文 2024-04-01 DOI: 10.3390/rs16071306

With ongoing global warming and permafrost thawing, weathering processes will change on the Yukon River, with risks for water quality and ecosystem sustainability. Here, we explore the relationship between weathering processes and permafrost cover using elemental concentration and strontium and lithium isotopic data in the dissolved load of 102 samples collected during the summer across most major tributaries of the Yukon River. The Yukon River basin is dominated by silicate weathering with a high contribution from young volcanic rock units. In glaciated mountainous zones, we observe higher carbonate weathering contribution, low Li/Na ratios and low delta Li-7 values (< 15 parts per thousand & nbsp;). In these areas, the high denudation rate and high supply of fresh minerals associated with alpine glaciers favor congruent silicate weathering, and sulfide oxidation accelerates carbonate weathering. In floodplains covered by continuous permafrost, we observe a high carbonate weathering contribution, relatively high Li/Na ratios, and low delta Li-7 values (~& nbsp;18 parts per thousand). We argue that the minimal water-rock interactions in this setting inhibit silicate weathering and favor congruent weathering of easily weatherable minerals (i.e., carbonates). Conversely, in areas with discontinuous or sporadic permafrost, we observe a dominance of silicate weathering, with higher and more variable Li/Na ratios and high delta Li-7 values (11-33 parts per thousand). In this setting, longer water-rock interactions combined with the high supply of fresh minerals from mountain zones favor more incongruent weathering. The unique history of Pleistocene glaciations on the Yukon River basin also influences weathering processes. Many areas of the basin were never glaciated during the Pleistocene, and rivers draining those regions have higher delta Li-7 values suggesting more incongruent weathering associated with deeper flow paths and longer water residence time in the regolith. Our work underlines that water-rock interactions, including active layer weathering and groundwater inputs, are highly dependent on climate conditions and glacial processes across the Yukon River basin, with key implications for future water quality in this warming basin. Crown Copyright (C) 2022 Published by Elsevier Ltd. All rights reserved.& nbsp;

期刊论文 2022-04-15 DOI: 10.1016/j.gca.2022.02.016 ISSN: 0016-7037
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页