Objective Xinjiang, recognized as a crucial coal resource area and strategic reserve in China, possesses abundant coal resources. The Zhundong coalfield, a large-scale open-pit mining area within this region, significantly contributes to increased concentrations of light-absorbing aerosols due to its coal production activities and associated industrial processes. These activities also produce substantial amounts of black carbon (BC), which, through atmospheric transport, mixes with snow and ice, influencing glacier ablation in the Tianshan Mountains. While previous studies on the Zhundong coalfield have predominantly concentrated on the ecological pollution resulting from mining activities, they have overlooked the implications for climate and radiative forcing in the area. In this context, it is crucial to employ satellite remote sensing technology to analyze and assess the optical properties and radiative forcing effects of light-absorbing aerosols in the Zhundong coalfield region. Such an approach is significant for understanding the regional environmental and climatic impacts associated with the development of open-pit coal resources in the arid regions of western China. Methods We investigate the temporal and spatial characteristics of aerosol optical depth (AOD) in the Zhundong coalfield by utilizing MODIS aerosol product (MOD04_L2) data spanning from 2005 to 2020. To simulate aerosol particle size information, a Mie scattering model is employed under the core-shell assumption. An uncertainty interval of 0.03 is selected to estimate the possible range of particle sizes within each grid, constrained by maximum and minimum values. The inter of these constraints is then used to calculate the optical parameters for various particle size combinations. Additionally, the influence of sand and dust aerosols is considered by setting the single scattering albedo (SSA) range for these aerosols between 0.93 and 0.96. The simulated extinction coefficient (sigma(ext)) is used as a threshold value; any portion smaller than this threshold is excluded to quantify the concentration of local BC columns. Finally, the radiative forcing effect of light-absorbing aerosols in the Zhundong coalfield over the past decade is evaluated using the SBDART radiative transfer model. Results and Discussions The AOD in the Zhundong coalfield exhibited pronounced spatial heterogeneity from 2005 to 2020, with high AOD values predominantly concentrated in the mining area and its surrounding regions (Fig. 2). Seasonal variations reveal the highest concentrations in spring and winter, followed by fall, with the lowest levels observed in summer. During spring and winter, AOD values generally exceed 0.15, except in certain desert areas. Interannual fluctuations in AOD are frequent, marked by significant turning points in 2010, 2012, and 2017 (Fig. 3), which indicates that coal production, energy restructuring, and capacity reduction policies have a significant effect on air quality in mining regions. The inter-monthly variation displays a distinct U pattern (Fig. 3), with AOD peaking at 0.27 in February, which highlights the substantial influence of anthropogenic activities on regional air quality. Dusty weather in spring emerges as a dominant factor. Overall, the temporal variation in AOD in the Zhundong coalfield reflects the combined effects of natural factors and human activities. In the Wucaiwan and Dajing mining areas, the range of BC number density is (1?3)x10(18) grid(-1) (Fig. 6). In 2012, against the backdrop of China's coal economic performance, open-pit mining was less affected by the decline in production growth due to its larger production capacity and lower costs, influenced by mining methods, climatic conditions, and economic activities. In contrast, shaft mining is more heavily affected by safety risks and environmental constraints, which may lead to production limitations, especially under strengthened policy and regulatory measures. As a result, there are greater fluctuations in BC number density in the Dajing mining area (Fig. 6). The range of BC number density is 20?40 kg/grid, with seasonal variations largely consistent, although peak months differed. This suggests that BC mass concentration is closely related to particle aging and size (Fig. 7). Radiative forcing values at the top of the atmosphere, at the surface, and within the atmosphere showed varying degrees of decrease between 2011 and 2017, followed by a gradual increase. This suggests that reducing emissions of light-absorbing aerosols from mining sites can effectively lower regional radiative forcing values in the context of reduced coal production (Fig. 10). Radiative forcing values are higher in March and April during spring, when BC is aged and mixed with other aerosol components through mutual encapsulation, which results in more complex microphysical-chemical properties. This process enhances the absorption capacity of BC for both short- and long-wave radiations (Fig. 10). Conclusions We analyze the overall change in AOD in the Zhundong coalfield from 2005 to 2020 using the MODIS aerosol dataset. By integrating a meter scattering model to simulate optical parameters under various particle size combinations and constraining these simulations with single scattering albedo (SSA) observations from MODIS, this approach allows us to determine the eligible particle size information and optical parameters, enabling the calculation of BC mass concentration within the atmospheric column of the Zhundong coalfield. Subsequently, the area's radiative forcing is estimated using the SBDART radiative transfer model. The findings reveal several key insights. 1) The changes in AOD are closely linked to policy implementation and economic activities within the coal mining area. Interannual variations indicate that AOD peaked in 2012 and subsequently declined, which suggests that policies and economic activities significantly affect AOD levels. Seasonally, AOD is higher in spring and winter and lower in summer. The unique topographic and meteorological conditions facilitate the transport of BC from the mining area to other regions, which highlights the combined effects of seasonal meteorological conditions and human activities. 2) The column concentration of light-absorbing aerosols in the coal mine area is affected by both anthropogenic activities and meteorological conditions, particularly during sandy and dusty weather. A comparison of column concentrations between the Wucaiwan and Dajing mines shows that open-pit mining adapts more effectively in 2012, given the context of China's coal economic operations, whereas shaft mining may face greater challenges. 3) By examining the changes in AOD and light-absorbing aerosols, it is evident that reducing emissions of light-absorbing aerosols from coal mining areas can effectively decrease regional radiative forcing values in the short term. Inter-monthly variations reveal that atmospheric radiative forcing trends differ from those at the surface and the top of the atmosphere, with the latter two being closely related to the optical properties of light-absorbing aerosols. In spring, the frequent occurrence of sand and dust facilitates the mixing of BC with other substances, forming light-absorbing aerosols with a core-shell structure. This significantly enhances the light-absorbing capacity of BC, thereby increasing radiative forcing.
Brown carbon (BrC) has been recognized as an important light-absorbing carbonaceous aerosol, yet understanding of its influence on regional climate and air quality has been lacking, mainly due to the ignorance of regional coupled meteorology-chemistry models. Besides, assumptions about its emissions in previous explorations might cause large uncertainties in estimates. Here, we implemented a BrC module into the WRF-Chem model that considers source-dependent absorption and avoids uncertainties caused by assumptions about emission intensities. To our best knowledge, we made the first effort to consider BrC in a regional coupled model. We then applied the developed model to explore the impacts of BrC absorption on radiative forcing, regional climate, and air quality in East Asia. We found notable increases in aerosol absorption optical depth (AAOD) in areas with high OC concentrations. The most intense forcing of BrC absorption occurs in autumn over Southeast Asia, and values could reach around 4 W m(-2). The intensified atmospheric absorption modified surface energy balance, resulting in subsequent declines in surface temperature, heat flux, boundary layer height, and turbulence exchanging rates. These changes in meteorological variables additionally modified near-surface dispersion and photochemical conditions, leading to changes of PM2.5 and O-3 concentrations. These findings indicate that BrC could exert important influence in specific regions and time periods. A more in-depth understanding could be achieved later with the developed model.
Duringthe summer and winter periods of 2019-2020, we conductedsampling of fine mode ambient aerosols in the western Himalayan glacialregion (WHR; Thajiwas glacier, 2799 m asl), central Himalayan glacialregion (CHR; Gomukh glacier, 3415 m asl), and eastern Himalayan glacialregion (EHR; Zemu glacier, 2700 m asl). We evaluated the aerosol opticalproperties, which included the mass absorption coefficient, mass absorptionefficiency, mass scattering efficiency, absorption angstrom exponent,single scattering albedo, as well as their simple radiative forcingefficiencies. We observed the highest absorption in the near ultraviolet-visiblewavelength range (200-400 nm), with CHR showing the highestabsorption compared to the other two sites, WHR and EHR, respectively.Across the wavelength range of 200-1100 nm, the overall contributionof black carbon to light attenuation was greater than that of browncarbon. However, brown carbon dominated the absorption in the nearUV-visible wavelengths, providing evidence of its non-trivialpresence over the Himalayan region. Additionally, we observed a positiveradiative forcing (W/g), which leads to net warming at these sites.The findings of this ground-based study contribute to our understandingof the light-absorbing nature of carbonaceous aerosols and their impacton the Himalayan glacier regions.
This study employs a fully coupled meteorology-chemistry-snow model to investigate the impacts of light-absorbing particles (LAPs) on snow darkening in the Sierra Nevada. After comprehensive evaluation with spatially and temporally complete satellite retrievals, the model shows that LAPs in snow reduce snow albedo by 0.013 (0-0.045) in the Sierra Nevada during the ablation season (April-July), producing a midday mean radiative forcing of 4.5 W m(-2) which increases to 15-22 W m(-2) in July. LAPs in snow accelerate snow aging processes and reduce snow cover fraction, which doubles the albedo change and radiative forcing caused by LAPs. The impurity-induced snow darkening effects decrease snow water equivalent and snow depth by 20 and 70 mm in June in the Sierra Nevada bighorn sheep habitat. The earlier snowmelt reduces root-zone soil water content by 20%, deteriorating the forage productivity and playing a negative role in the survival of bighorn sheep.
Light-absorbing aerosols (LAAs), mainly composed of black carbon (BC) and dust aerosols, are responsible for significant climate forcing through their strong absorption of solar radiation. A fully coupled meteorology-chemistry model (WRF-Chem) associated with satellite retrievals and in situ measurements is used to investigate the direct radiative forcing (DRF) induced by LAAs in different climate regions over East Asia. Results show that the annual all-sky dust and BC DRF are -0.84 and 1.06 W m(-2)at the top of atmosphere (TOA), -1.23 and -1.55 W m(-2)at the surface (SUR), and 0.39 and 2.61 W m(-2)within the atmosphere (ATM) over East Asia. Large LAAs DRF can be found in hyper-arid, subhumid, and humid regions at the SUR and ATM where dust DRF dominates the surface cooling effect, while BC DRF is predominant in the eminent warming effect on ATM in most climate regions. The meteorological conditions in hyper-arid region are associated with enhanced surface wind and weakened atmospheric wind, which is in favor of the emission and accumulation of dust supporting the positive LAAs DRF anomalies higher than 10 W m(-2)in hyper-arid region. The positive geopotential height anomalies over Northeast China weaken the westerly winds, which is beneficial to the accumulation of LAAs, and results in the positive LAAs DRF anomalies of 3 W m(-2)in semiarid regions. The large LAAs mass loading, strong aerosol absorptive ability, and decreased cloudiness caused by northerly anomalies are responsible for the high LAAs DRF in humid region.
Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angstrom exponent (alpha) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average alpha of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of alpha in the heating season was distinctly different from that in non-heating seasons. a peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, alpha peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while alpha increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of alpha on wind speed was found in the heating season, probably due to well mixed regional pollution. Pollution episodes were mostly encountered under low winds and had a low level of alpha, implying aerosol absorption should be largely attributed to freshly emitted BC from local sources under such conditions. Extensive field campaigns and long-term chemical and optical measurements of light-absorbing aerosols are needed in the future to further advance our understanding on optical properties of light-absorbing aerosols and their radiative forcing in this region. (C) 2016 The Authors. Published by Elsevier Ltd.