共检索到 2

Buried cast iron pipelines are susceptible to damage at joints under fault movements. In this paper, a new three-dimensional soil-pipe continuum model for segmented pipelines undergoing fault rupture is introduced, in which both the nonlinear behavior of lead-caulked joints and post-peak softening behavior of dense sand are properly characterized. The rationality of the developed numerical model is validated against experimental results reported in the literature. Parametric analyses indicate that ignoring the strain softening behavior of soil would underestimate the maximum joint rotations, and the parameters of fault-pipe inter angle, cast iron-lead adhesion, and burial depth play a notable role on the magnitude of joint kinematics. Numerical fault rupture analyses are then conducted for cast iron pipelines with nominal diameters ranging from 900 to 1500 mm. Based on the numerical results, predictive solutions are developed for estimating the maximum axial translations and joint rotations under fault movements. The residuals of the proposed solutions are generally unbiased. The proposed solutions can be used to evaluate the maximum joint kinematics in terms of axial translations and joint rotations for largediameter cast iron pipelines with lead-caulked joints undergoing strike-slip fault ruptures.

期刊论文 2024-10-01 DOI: 10.1139/cgj-2023-0191 ISSN: 0008-3674

A new numerical-based fragility relation for cast iron (CI) pipelines with lead-caulked joints subjected to seismic body-wave propagation is proposed in this article. Two-dimensional 1600-m-length finite element models for pipelines buried in sand are developed in OpenSees. Parametric analysis is performed to investigate the influence of various parameters on the damage estimates of the buried pipelines. Numerical analyses are conducted to estimate the repair rates (RR) for CI pipelines subjected to wave propagation. The predictive model for RR is thus developed based on the numerical results and the Gaussian Process Regression approach. The model developed employs four predictor variables, namely, the peak particle velocity and wave propagation velocity along axial direction, the maximum soil shear force per unit length, and the outer diameter of pipelines, exhibiting desirable performance in terms of predictive efficiency and generalization. The performance of the developed relation is compared to several existing fragility relations. The new fragility relation can be used to estimate RR for CI pipelines with lead-caulked joints with outer diameters ranging from 169 to 1554 mm subjected to seismic body-wave propagation.

期刊论文 2024-02-01 DOI: 10.1177/87552930231209195 ISSN: 8755-2930
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页