Most gravel roads leading to rural areas in Ghana have soft spot sections as a result of weak lateritic subgrade layers. This study presents a laboratory investigation on a typical weak lateritic subgrade soil reinforced with non-woven fibers. The objective was to investigate the strength characteristic of the soil reinforced with non-woven fibers. The California Bearing Ratio and Unconfined Compressive Strength tests were conducted by placing the fibers in single layer and also in multiple layers. The results showed an improved strength of the soil from a CBR value of 7%. The CBR recorded maximum values of 30% and 21% for coconut and palm fibers inclusion at a placement depth of H/5 from the compacted surface. Multiple fiber layer application at depths of H/5 & 2 h/5 yielded CBR values of 38% and 31% for coconut and palm fibers respectively. The Giroud and Noiray design method and the Indian Road Congress design method recorded reduction in the thickness of pavement of 56% to 63% for coconut fiber inclusion and 45% to 55% for palm fiber inclusion. Two-way statistical analysis of variance (ANOVA) showed significant effect of depth of fiber placement and fiber type on the geotechnical characteristics considered. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic),CBR(sic)(sic)7%(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)H/5(sic)(sic)(sic)(sic)(sic)(sic),CBR(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)30%(sic)21%. (sic)H/5(sic)2H/5(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)CBR(sic)(sic)(sic)(sic)38%(sic)31%. Giroud&Noiray(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)56%(sic)63%,(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)45%(sic)55%. (sic)(sic)(sic)(sic)(sic)(sic)(ANOVA)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
The long-term compression behavior of clay is significantly affected by temperature paths. However, most studies on temperature paths focus on short-term changes in volume and pore pressure, with limited research on how temperature paths affect soil secondary consolidation characteristics. To experimentally investigate the time-dependent compression behavior of lateritic clay under different temperature paths, a series of temperaturecontrolled isotropic consolidation tests from 5 to 50 degrees C were conducted with consideration of heating/cooling rate and thermal cycle paths. The results indicate that the accumulation of thermal-induced pore water pressure increases with the rate of temperature variations, but a faster rate leads to smaller volumetric changes. Moreover, thermal cycling does not cause irreversible thermoplastic volumetric strain with a suitable heating/cooling rate, and the cycle paths do not influence this outcome. Furthermore, the creep rate of heated samples increases significantly, and the heating/cooling rate also affects the creep rate: a slower heating rate results in a faster creep rate. Additionally, the creep behavior ceased after the thermal cycle, and it appears that the thermal cycle paths have no effect on the creep rate. Finally, this study summarizes the mechanism of the influence of temperature on the creep behavior of clay, and reasonable explanations are proposed for the thermo-mechanical behavior caused by different temperature paths.
This study investigates the stabilization of lateritic soil through partial replacement of cement with flue gas desulfurization (FGD) gypsum, aiming to enhance its engineering properties for pavement subgrade applications. Lateritic soils are known for their high plasticity and low strength, which limit their utility in infrastructure. To address these challenges, soil specimens were treated with varying cement contents (3%, 6%, 9%) and FGD gypsum additions (1%-6%). Laboratory tests were conducted to evaluate plasticity, compaction, permeability, unconfined compressive strength (UCS), California Bearing Ratio (CBR), and fatigue behaviour. The optimal mix 6% cement with 3% FGD gypsum demonstrated significant improvements: UCS increased by over 110% after 28 days, permeability reduced by 26%, and soaked CBR improved by 56% compared to untreated soil. Additionally, fatigue life showed remarkable enhancement under cyclic loading, indicating increased durability for high-traffic applications. To support predictive insights, machine learning models including Decision Tree, Random Forest, and Multi-Layer Perceptron (MLP) were trained on 168 data samples. The MLP and Random Forest models achieved high prediction accuracy (R2 approximate to 0.98), effectively capturing the non-linear interactions between mix proportions and UCS. SHAP (SHapley Additive exPlanations) analysis identified curing duration as the most influential factor affecting strength development. This integrated experimental-computational approach not only validates the feasibility of using FGD gypsum in sustainable soil stabilization but also demonstrates the effectiveness of machine learning in predicting key geotechnical parameters, reducing reliance on extensive laboratory testing and promoting data-driven pavement design.
Modifying lateritic soils, which are widely distributed in humid and rainy regions around the world, for embankment construction is a practical necessity for highway and railway projects. These embankments are susceptible to infiltration of rainfall, wetting and vibration from earthquakes and traffic. Further study is required to investigate the dynamic response characteristics of these embankments under combined action of wetting and vibration. Two scaled-down physical models of embankments were built: one with unmodified lateritic soils, which are typical soils with high liquid limit in central-southern China, and the other with lateritic soils modified with lime at a content of 8%. A self-designed model test system was used to conduct model tests of both embankments under combined action of wetting and vibration. White noise excitation was employed to quantitatively compare the two types of embankments in terms of variations of dynamic properties, such as natural frequency and damping ratio, with wetting degrees. Three types of seismic waves-Chi_Chi, NCALIF and SFERN-were used to quantitatively compare the two types of embankments in terms of variations of dynamic response parameters, including PGA amplification effect, pore water pressure and earth pressure, with wetting degrees and acceleration amplitudes. The test results reveal significant differences in dynamic properties and responses of the two types of embankments. Compared to the unmodified embankment, the damping ratio and PGA amplification factor of the modified embankment are reduced by up to 53.5% and 37.5%, respectively, resulting in an effective mitigation of the combined action of wetting and vibration. Test values of natural frequency, damping ratio, PGA amplification factor, dynamic pore water pressure and dynamic earth pressure of both types of embankments are presented. The research findings provide a theoretical basis for highway and railway construction and for revision of technical specifications in regions with widespread lateritic soils.
Lateritic clay is widely distributed in southern China, and its strength is greatly affected by water content. The elevated moisture content in lateritic clay during monsoon periods frequently results in insufficient shear strength for standard engineering applications. Large quantities of solid waste, including steel slag, fly ash, and granulated blast furnace slag, are produced as industrial by-products. This paper is based on the backfilling resource utilization of steel slag, fly ash, and ground-granulated blast-furnace slag as lateritic clay improvement admixtures, along with the stress-strain behavior, strength characteristics, and microstructure of steel-slag-modified lateritic clay, fly-ash-modified lateritic clay, and ground-granulated blast-furnace slag-modified lateritic clay, by combining uniaxial compression tests, straight shear tests, and scanning electron microscopy observation. The experimental results were analyzed to determine the appropriate dosages of three kinds of solid waste and their mechanisms in lateritic clay modification. The results indicate that the unconfined compressive strength of SS-modified lateritic clay exhibited an increase with an increase in SS dosage in the range of 1-7%, the unconfined compressive strength of FA-modified lateritic clay showed an increase with an increase in FA dosage in the range of 1-5%, and the unconfined compressive strength of GGBFS-modified lateritic clay increased with an increase in the use of GGBFS in the range of 1-5%. Under the condition of a 7-day curing age, the unconfined compressive strength of lateritic clay modified with 7% SS increased by approximately 397%, while that modified with 5% FA and 5% GGBFS exhibited increases of about 187% and 185%, respectively. The stress-strain relationship of fly-ash and blast-furnace slag-modified lateritic clays showed elastic-plastic deformation. But the stress-strain behavior of steel-slag-modified lateritic clay at a steel slag dose greater than 5% and a maintenance age greater than 7 days showed elastic deformation. Analyzing the SEM images shows that the more hydration products are generated, the relatively higher the unconfined compressive strength of modified lateritic clay is, and the form of deformation of modified lateritic clay is closer to elastic deformation. Through comparative analysis of modified lateritic clay samples, this study elucidates the property-altering mechanisms of waste powder additives, guiding their engineering utilization.
Elastic shear moduli of soil at various temperatures and suctions are important for analysing the serviceability limit state of energy piles and many other structures. Up to now, however, the coupled effects of temperature and suction on elastic shear modulus and the stiffness anisotropy, have not been well understood. This experimental study investigated the anisotropic elastic shear modulus of a compacted lateritic clay. A temperature and suction-controlled triaxial apparatus equipped with bender element probes and local strain measurements was used. Soil suctions from 0 to 300 kPa, and a temperature range of 5-40 degrees C were applied. The results at saturated and unsaturated conditions consistently reveal that the shear modulus is smaller after heating at a given stress and suction. Several mechanisms may contribute to this thermal-induced reduction in shear modulus, such as the heating-induced reduction of interparticle force and air-water surface tension. Moreover, the reduction in shear modulus upon heating depends on the shear plane and the degree of anisotropy changes.
This study evaluates styrene butadiene rubber (SBR) and styrene acrylic latex (SA) as modifiers in cement-treated subbase materials (CTSB) to enhance mechanical properties and reduce cement usage sustainably. Optimal ratios for stabilizing sub-standard lateritic soils were identified, reducing water demand and increasing mechanical strength in polymer-modified cement pastes. A 10 % SA and a 15 % SBR as cement replacement by mass significantly improved bearing strength and strain capacities in CTSB, signifying enhanced flexibility and elasticity. Despite slight changes in compaction characteristics, the study identified 1.6 % SA and 2.4 % SBR as optimal binder (i.e., polymer-cement mixture) contents, compared to 3.3 % cement for conventional CTSB with similar unconfined compressive strength standards. SBR-enriched CTSB exhibited superior resilient modulus, indicating stronger inter-particle bonding. The integration of SA and SBR reduced capillary rise and enhanced moisture stability. This sustainable approach enhances pavement durability and reduces CO2 emissions by minimizing cement use. The findings emphasize the potential of polymer-modified CTSB for cost-effective and environmentally friendly road construction, offering significant implications for advancing pavement engineering materials and promoting eco-friendly practices within the industry.
Introduction The engineering geological characteristics of Yunnan's lateritic soil are quite unique, making it prone to shallow group landslides under rainfall conditions. This study focused on an old lateritic soil landslide as a case study.Methods Soil column ponding infiltration experiment was conducted to investigate the infiltration behavior of the lateritic soil. Numerical simulation software was employed to analyze the rainfall-induced seepage characteristics of the landslide, and a comprehensive assessment of the failure mechanisms of the lateritic soil landslide was conducted.Results The study findings are as follows: (1) During water infiltration, the infiltration time curve of the lateritic soil column showed a parabolic growth trend. The migration rate of the wetting front rapidly decreased from 0.15 to 0.2 cm/min to 0.1 cm/min and then stabilized at approximately 0.04 cm/min. (2) Long-term heavy rainfall is the condition for the formation of this old lateritic soil landslide. By coupling the seepage process, the stability coefficient of the lateritic soil slope was calculated, revealing that the instability rainfall threshold of the slope under prolonged rainfall conditions is generally 120 mm/d. (3) The main changes in the seepage field occurred in the shallow soil layer. In the later stages of rainfall, the infiltration rate of the slope was controlled by the permeability coefficient of the lateritic soil. As the rainfall intensity increased, the depth of rainfall impact increased, and the pore water pressure in the shallow soil layer tended to gradually increase and then stabilize under different rainfall intensities. (4) Under long-term rainfall conditions, the volumetric water content of the soil at the toe of the lateritic soil slope first peaked. After the rainfall ended, moisture in the slope continued to migrate to the toe, keeping the soil at the toe in a saturated state. (5) The formation and evolution of this lateritic soil landslide could be divided into five stages: initial natural stage, rainfall infiltration-crack expansion, shallow creep-progressive collapse of the front edge, sliding surface penetration-overall instability, and landslide braking accumulation.Conclusion The research results provide significant theoretical guidance and practical implications for understanding the causes and prevention of lateritic soil landslides in similar areas.
Lateritic clay has distinct properties from other clays due to its high sesquioxide content. Its stiffness characteristics have not been well understood, especially when the soil is unsaturated and anisotropic. This study investigated the stiffness characteristics of compacted lateritic clay through suction -controlled triaxial compression tests equipped with local strain measurements. Both vertically and horizontally cut specimens were tested to determine the evolution of stiffness anisotropy during shearing. Three suctions (0, 10, and 150 kPa) and two confining pressures (50 and 200 kPa) were considered. When strains are relatively small (e.g., less than 0.2%), the secant Young's modulus E sec of vertical specimens is consistently higher than that of horizontal specimens at all suctions and stresses due to the inherent anisotropic structure. The degree of anisotropy increases with increasing suction since suction enhances the stiffness more significantly in vertical specimens than in horizontal specimens. This behaviour may be due to an enhanced force chain in the vertical direction during shearing. As strains increase, the degradation of E sec normalized by the maximum Young's modulus E 0 is almost independent of suction and anisotropy. Lateritic clay has a higher degradation rate than other clays with a similar plasticity index because of its aggregated microstructure.
In tropical regions, heavy rainfall induces erosion and shallow landslides on road embankments. Cement-based stabilization methods, common in these regions, contribute to climate change due to their high carbon footprint. This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics. The objective is to enhance engineered embankment slopes' erosion resistance and stability while offering reuse options for industrial byproducts. This study examined various mix designs for unconfined compressive strength (UCS) and permeability, utilizing 30% bottom ash (BA) and 1% coir fiber (CF) with varying sizes ranging from 10 to 40 mm, 6% lime, and laterite soil (LS), followed by microstructural analyses. The results demonstrate that the compressive strength increases as the CF length increases to 25 mm. In contrast, permeability increases continuously with increasing CF length. Lime-treated mixtures exhibit superior short- and long-term strength and reduce permeability owing to the formation of cementitious materials, as confirmed by microstructural analyses. A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment. Based on the rainfall simulation results, the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS, especially when lime is added to the top layer. This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF, offering a promising solution for tropical regions susceptible to surface erosion and landslides.