Lunar Flashlight (LF) is an innovative National Aeronautics and Space Administration (NASA) CubeSat mission that is dedicated to quantifying and mapping the water ice harbored in the permanently shadowed craters of the lunar South Pole. The primary goal is to understand the lunar resource potential for future human exploration of the Moon. To this end, the LF spacecraft will carry an active multi-band reflectometer, based on an optical receiver aligned with four high-power diode lasers emitting in the 1 to 2-m shortwave infrared band, to measure the reflectance of the lunar surface from orbit near water ice absorption peaks. We present the detailed optical, mechanical, and thermal design of the receiver, which is required to fabricate this instrument within very demanding CubeSat resource allocations. The receiver has been optimized for solar stray light rejection from outside its field of view, and utilizes a 70 x 70-mm, aluminum, off-axis paraboloidal mirror with a focal length of 70 mm, which collects the reflected light from the Moon surface onto a single-pixel InGaAs detector with a 2-mm diameter, hence providing a 20-mrad field of view. The characterization of the flight receiver is also presented, and the results are in agreement with the expected performance obtained from simulations. Planned to be launched by NASA on the first Space Launch System (SLS) test flight, this highly mass-constrained and volume-constrained instrument payload will demonstrate several firsts, including being one of the first instruments onboard a CubeSat performing science measurements beyond low Earth orbit, and the first planetary mission to use multi-band active reflectometry from orbit.
Mapping and quantifying lunar water ice addresses one of NASA's Strategic Knowledge Gaps to understand the lunar resource potential for future human exploration of the Moon. Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently-shadowed and occasionally-sunlit regions in the vicinity of the lunar South Pole. Lunar Flashlight will acquire these measurements from lunar orbit using a multi-band laser reflectometer composed of an optical receiver aligned with four lasers emitting different wavelengths in the shortwave infrared spectral region between 1 mu m and 2 mu m. The receiver measures the laser radiance reflected from the lunar surface in each spectral band and continuum/absorption reflectance band ratios are then analyzed to quantify water ice concentration in the illuminated spot. The receiver utilizes a 70x70-mm, aluminum, off-axis paraboloidal mirror with a focal length of 70 mm, which collects the incoming light onto a single, 2 mm diameter InGaAs detector with a cutoff wavelength of 2.4 mu m. We present the optical and mechanical designs of the receiver, including its optimization for rejection of solar stray-light from outside its intended field of view. This highly mass- and volume-constrained instrument payload will demonstrate several firsts, including being one of the first instruments onboard a Cube Sat performing science measurements beyond low Earth orbit and the first planetary mission to use multi-band active reflectometry from orbit.