Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources. We synthesised the data qualitatively to assess the ability to better identify possible mechanisms and quantitatively, using information theory metrics, to measure the value of different measurements in constraining plant water fluxes and water status. Transpiration rates declined during the drydown and then showed a delayed and partial recovery following rewatering. After rewatering, plant water potentials also became decoupled from transpiration rates and the canopies experienced significant yellowing and leaf loss. Hormonal mechanisms were identified as a likely driver, demonstrating a mechanism with sustained impacts on plant water fluxes in the absence of xylem hydraulic damage. Quantitatively, the constraints offered by different measurements varied with the dynamic of interest, and temporally, with behaviour during recovery more difficult to constrain than during water stress. The study provides a uniquely diverse dataset offering insight into mechanisms of plant water stress response and approaches for studying these responses.
Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 x 10(4) nM, 61.6 dpm.m(-3), and 4.5 x 10(5) dpm.m(-3) compared with 1.3 x 10(2) nM, 5.7 dpm.m(-3), and 4.4 x 10(3) dpm.m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g.m(-2).y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.