共检索到 3

Metallic ions are commonly found in the cis-lunar environment, primarily produced through the neutral lunar exosphere. They become prevalent species of lunar pickup ions as the Moon moves through the solar wind upstream, magnetosheath, and magnetotail. Extensive studies on the composition of lunar pickup ions from the Lunar Atmosphere and Dust Environment Explorer and THEMIS-ARTEMIS missions have revealed the significant presence of ions with around 28 and 40 amu near the Moon, which are later identified as metallic species such as Al+, Si+ and K+ ions. However, while these studies have provided valuable insights, the abundance of metallic ions and their variations with the Moon's location and solar activity has yet to be understood. This study calculates the production and ionization rates of metallic ions based on in-situ THEMIS-ARTEMIS observations. Our analysis indicates that the magnetosphere effectively reduces the production of metallic neutrals and ions due to the reduction of ionization and sputtering rates. The statistical analysis of the 12-year data set further shows that the lunar pickup ion fluxes are not heavily reliant on solar activity, and the median values remain relatively consistent over time. Therefore, the source rates of metallic pickup ions are associated with the location of the Moon rather than being dependent on solar activity. The outflow rates of heavy ion species from the Moon are comparable with the molecular and metallic ion rates from Earth's ionosphere, suggesting their essential roles in the dynamics of heavy ions in Earth's terrestrial environment.

期刊论文 2025-04-01 DOI: 10.1029/2024JA033566 ISSN: 2169-9380

Aerosol radiative properties using recently available high-quality columnar aerosol data collected at several AERONET sites in South Asia, with a focus on pollution outflow from continental South Asia observed over Hanimaadhoo in Maldives, a small island in northern Indian Ocean are quantified. The seasonal mean aerosol optical depth (AOD) over Hanimaadhoo is >= 0.3 (except ca. 0.2 during monsoon season), and single scattering albedo (SSA) is > 0.90 in all seasons. Fine mode aerosols contribute dominantly to AOD. SSA decreases as a function of wavelength due to influence of continental aerosols, except during the monsoon season when its spectral trend reverses due to increase in dust. Carbonaceous aerosols dominate (>90%) contribution to absorption AOD (AAOD). Black carbon (BC) and brown carbon (BrC) contribute >75% and -25 Wm(-2), > -20 Wm(-2) and similar to+20 Wm(-2), respectively. Aerosol loading and atmospheric heating have increased over this background site over the last decade. A regional-scale analysis of aerosol properties and radiative effects across and surrounding the Indo-Gangetic Plain (IGP) shows that AOD is >= 0.3 over entire region, and aerosols reduce seasonally 30-50 Wm(-2) of solar radiation reaching the surface, contributing significantly to solar dimming effect. The atmospheric solar heating rate due to aerosols (HR) is >= 1 K day(-1) across IGP. These high ARFs, ARFE(SFC) and HR, and increasing trends have significant implications to climate and hydrological cycle over South Asia and beyond.

期刊论文 2020-11-01 DOI: 10.1016/j.atmosenv.2020.117813 ISSN: 1352-2310

The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft observes outflowing molecular ionospheric ions at lunar distances in the terrestrial magnetotail. The heavy ion fluxes are observed during geomagnetically disturbed times and consist of mainly molecular species ( N2+, NO+, and O2+, approximately masses 28-32amu) on the order of 10(5)-10(6)cm(-2)s(-1) at nearly identical velocities as concurrently present protons. By performing backward particle tracing in time-dependent electromagnetic fields from the magnetohydrodynamic Open Global Geospace Circulation Model of the terrestrial magnetosphere, we show that the ions escape the inner magnetosphere through magnetopause shadowing near noon and are subsequently accelerated to common velocities down the low-latitude boundary layer to lunar distances. At the Moon, the observed molecular ion outflow can sputter significant fluxes of neutral species into the lunar exosphere while also delivering nitrogen and oxygen to the lunar volatile inventory.

期刊论文 2016-07-16 DOI: 10.1002/2016GL069715 ISSN: 0094-8276
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页