This study investigates the strain development of saturated silty soil of Yellow River under varying initial consolidation inclination angles zeta by principle stress rotation tests. The results revealed that distinct patterns in axial, circumferential and torsional shear strains show the influence of zeta on the mechanical response of silty soil. Notably, the axial strain exhibits compressive behaviour at zeta=90 degrees during the first cycle, while the circumferential strain displays tensile behaviour. Anisotropy initiates at zeta=90 degrees and around 60 degrees for other zeta angles. Different values of zeta exhibit stabilization trends in strain fluctuations, with zeta=90 degrees and zeta=75 degrees showing intriguing similarities. The case of zeta=45 degrees stands out, with the highest fluctuation and strain amplitude. Torsional shear strain similarities are observed among most zeta angles except for zeta=90 degrees and zeta=60 degrees. Volumetric strain emphasizes the significant impact of consolidation angle inclination on anisotropic characteristics. With the increase of the initial solidification angle, the hysteresis curve shifts to the left, indicating cyclic creep characteristics, with negligible shear strain for the case of zeta=60 degrees. As the cycle period increases, the hysteresis loop contracts, indicating the continuous strengthening and eventual stabilization of shear stiffness. This comprehensive exploration provides valuable insights into the complex behaviour of saturated silty soil under rotational stress conditions, highlighting the role of initial consolidation inclination angles in shaping its mechanical response.