共检索到 2

Human space exploration missions in the near future will inevitably demand beyond-Earth manufacturing capacity to develop critical subsystems utilising in situ resources. Therefore, to find an alternative solution to the logistics challenges of long-duration space missions, an on-site component fabrication process utilising indigenous resources on the Moon and Mars will be economical and play a crucial role in ensuring the expansion of succeeding missions to deep space. Additive manufacturing (AM) exhibits excellent potential to develop intricate components with functional and tailorable properties at various scales. To assess the potential of AM, an artificial Mars soil has been processed to formulate stable aqueous paste containing less organics (1.5% versus typically 30-40%) amenable to resource-efficient 3D printing. The formulated paste was utilised to fabricate a range of solid and porous designs of various shapes and sizes using a layer-wise material extrusion method for the first time. The additively manufactured components sintered at 1100 degrees C for 2 h exhibited an average relative permittivity (epsilon r) = 4.43, dielectric loss (tan delta) = 0.0014, quality factor (Q x f) = 7710 GHz and TCf = - 9. This work not only demonstrates progress in paste additive manufacturing but also illustrates the potential to formulate eco-friendly ink that can deliver components with functional properties to support long-term space exploration utilising local resources available on Mars.

期刊论文 2024-12-01 DOI: 10.1007/s40964-024-00567-3 ISSN: 2363-9512

With the implementation of the Chang'E-5 mission in 2020,the three phases of China lunar exploration program,namely orbiting,landing and returning,have been completed.Next,the International Lunar Research Station (ILRS)will be established at the lunar south pole by 2030,and a lunar base will be planned later.It is a new era of exploitation and utilization of the Moon,in which a vast tasks should be completed.In this paper,we summarized some important progresses of investigation of lunar resources in the past,including lunar resource exploration,analysis of lunar volatiles,mineral extraction,and material construction by 3D printing of lunar regolith.Then,we proposed future tasks for the exploitation of the lunar resources.The main challenges of the Moon,such as the extreme lunar environment,unique properties of lunar regolith,and autonomous control of the process,were considered.The views in this paper can be referenced for future scientific researches and engineering tasks in the field.

期刊论文 2024-02-25 DOI: 10.16708/j.cnki.1000-758X.2024.0001 ISSN: 1000-758X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页