共检索到 2

Volatiles including water on the Moon has been one of the most interesting scientific objects for decades. In this study, we systematically introduced a concept for China's Chang'E- 7 (CE-7) lunar polar exploration mission which consists of five elements, the orbiter, lander, rover, and leaper, and one relay satellite. The orbiter will provide a high-resolution image preparing for landing site selection. We also proposed three phases for in-situ investigation after landing. (1) The rover and leaper will jointly investigate the sunlit area; (2) the leaper will explore cold traps; and (3) the leaper will fly back to the sunlit area and continue an extended exploration mission. An experimental penetrator launched by the lander will penetrate permanently shadowed crater walls for water ice detection. Data will be transmitted to Earth through the relay satellite due to the limited Earth visibility. We also calculated the illumination rate within a 15 x 15 km area that partially covers the Shackleton crater at a high spatial resolution of 20 m/pixel during lunar southern summer. Specifically, we compared two potential landing sites with accumulated illumination at different altitude levels, slopes, and distances to the target. We found that one part of the Shackleton crater rim can be a primary landing site for CE-7's both sunlit areas and cold trap explorations.

期刊论文 2023-07-01 DOI: 10.1016/j.actaastro.2023.03.022 ISSN: 0094-5765

Lunar polar volatiles, such as water ice, are essential lunar exploration objects. The conceptual design for China's Chang'E-7 lunar exploration mission to the South Pole was proposed. The mission comprises an orbiter, a lander, a rover, a leaper, and a relay satellite. The orbiter can provide high-resolution images to select a suitable landing site. The rover and leaper will be deployed for in-situ exploration in sunlit areas and permanently shadowed regions, respectively. The relay satellite will transmit all data to the ground. We calculated the accumulated illumination, as an engineering condition, within a 15 kmx15 km area partially covering the Shackleton crater from January 1, 2024, to December 31, 2026. Two potential landing sites-areas SR1 and CR1-were analyzed in detail by comparing their average illumination rate, slope, and distance to the exploration target. Additionally, we simulated the electric field of the Shackleton crater within a 37 kmx27 km area, considering the effect of the plasma wake on the electric field in shadowed areas. The results show that the maximum surface potential near the rims is less than 2.1 V, while the minimum surface potential at the bottom of the crater can reach as low as -500 V due to the plasma wake effect. Therefore, a risk assessment is necessary, especially for the exploration of the leaper at the bottom of the Shackleton crater.

期刊论文 2023-01-01 DOI: 10.1360/SSPMA-2022-0255 ISSN: 1674-7275
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页