Cadmium (Cd) accumulation in Solanum nigrum L. is known to occur mainly in cell walls and vesicles. However, limited research has been conducted on the toxic effects of Cd specifically targeting mitochondria in S. nigrum leaves. This study aims to delineate the impact of Cd accumulation on mitochondrial structure and function in S. nigrum leaves, thereby providing a theoretical foundation for enhancing its application in phytoremediation of Cd-polluted soils. The results showed that the Cd content in mitochondria would gradually reach saturation with the increase of Cd treatment concentration. However, the accumulation of Cd led to osmotic pressure imbalance and morphological changes within mitochondria, which in turn caused a series of impairments in mitochondrial function. Cd severely damaged the energy metabolism function of mitochondria, especially under 200 mu M CdCl2 stress, the mitochondrial ATP content decreased by 90.65 % and the activity of H+-ATPase decreased by 80.65 %. Furthermore, reactive oxygen species (ROS) in mitochondria accumulated mainly in the form of H2O2. Compared with the non-Cd control group, the H2O2 content in the Cd-treated groups (50, 100, and 200 mu M CdCl2) increased by 61.62 %, 186.69 %, and 405.81 %, respectively. The inhibition of cellular respiration by Cd and the sharp increase in ROS exacerbated the oxidative damage in mitochondria. Interestingly, the activities of mitochondrial peroxidase (POD) and dehydroascorbate reductase (DHAR) exhibit remarkable tolerance under Cd stress. Based on these results, we believe that Cd can cause dysfunction and oxidative damage to the mitochondria of S. nigrum leaves.
Cadmium (Cd) in soil and water streams is now recognized as a significant environmental issue that harms plants and animals. Plants damaged by Cd toxicity experience various effects, from germination to yield reduction. Plant- and animal-based goods are allowing more Cd to enter our food chain, which could harm human health. Therefore, this urgent global concern must be addressed by implementing appropriate remedial measures. Plantbased phytoremediation is one safe, economical, and environmentally acceptable way to remove hazardous metals from the environment. Hyperaccumulator plants possess specialized transport proteins, such as metal transporters located in membranes of roots, as well as they facilitate Cd uptake from soil. This review outlines the latest findings about these membrane transporters. Moreover, we also discuss how innovative modern tools such as microbiomes, omics, nanotechnology, and genome editing have revealed molecular regulators connected to Cd tolerance, which may be employed to develop Cd-tolerant future plants. We can develop effective solutions to enhance tolerance of plant to Cd toxicity by leveraging membrane transporters and modern biotechnological tools. Additionally, implementing strategies to increase tolerance of Cd and restrict its bioavailability in plants' edible parts is crucial for improving food safety. These combined efforts will lead to the cultivation of safer food crops and support sustainable agricultural practices in contaminated environments.
Endophytic bacteria derived from metal hyperaccumulators have demonstrated potential for improving copper (Cu) remediation in host plants; however, their potential application in non-host crops remains unclear. In this study, endophytic bacteria isolated from Commelina communis growing in mining areas and their mitigation effects on Cu toxicity in non-host rice were comprehensively evaluated. Among the isolated endophytes, Bacillus sp. D2 exhibited the highest Cu resistance, producing indole-3-acetic acid (IAA) at a concentration of 0.93 mg/L and exhibiting ACC deaminase activity of 13.88 mu mol/mg & sdot;h under 200 mg/L Cu stress. Pot-experiment results revealed that Bacillus sp. D2 addition significantly increased the biomass and lengths of shoots under Cu stress conditions by 47.6% and 14.2%, respectively. Furthermore, Bacillus sp. D2 inoculation significantly reduced oxidative damage, enhanced antioxidant responses, and modulated plant hormone levels in Cu-exposed rice. Notably, Bacillus sp. D2 inoculation substantially decreased the upward translocation of Cu from underground roots to aboveground tissues. Moreover, Bacillus sp. D2 effectively alleviated Cu toxicity in rice plants by regulating the expression levels of genes involved in antioxidant systems (tAPx, Csd2, and FeSOD1), Cu transporters (AtPDR8 and HMA3), as well as metallothionein (MT2c). These results highlight the value of Bacillus sp. D2 as a bioinoculant for improving crop growth while reducing the risks associated with copper contamination in naturally Cu-contaminated soils.
The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. Dodonaea viscosa (L.) Jacq. is a shrub with wide geographical distribution and the ability to establish itself in mine tailings. The Sierra de Huautla Biosphere Reserve in Mexico contains a metallurgic district where mining activities have generated 780 million kg of waste with large concentrations of toxic heavy metals, mainly cadmium and lead. The present study evaluated the phytoremediation potential of D. viscosa in in situ conditions on soils contaminated with HMs (exposed) and reference sites (non-exposed) for one year. Also, the effects of cadmium (Cd) and lead (Pb) exposure in D. viscosa were analyzed via DNA damage (comet assay) morphological and physiological characters in exposed vs non-exposed individuals. The concentration of Cd and Pb was measured through atomic absorption spectrophotometry in the roots and leaves of plants. In total, 120 D. viscosa individuals were established, 60 growing in exposed and 60 in non-exposed soils. Exposed individuals of D. viscosa hyperaccumulated Cd and Pb in roots and leaves. At the end of the experiment, eight out of twelve characters under evaluation decreased significantly in HM-exposed plants in relation to individuals growing in non-exposed soils, except for stomatal index, stomatal coverage, and fresh leaf biomass. The micro-morphological and physiological traits of D. viscosa were not influenced by Cd and Pb bioaccumulation. In contrast, the bioaccumulation of Cd and Pb significantly influenced the macro-morphological characters and genetic damage; this last biomarker was 3.2 times higher in plants growing in exposed sites. The bioconcentration factor (BCF) of Cd and Pb in root and leaf tissue increased significantly over time. The mean BCF in root and leaf tissue was higher for Pb (877.58 and 798.77) than for Cd (50.86 and 23.02). After 12 months of exposure, D. viscosa individuals growing on mine tailing substrate showed that the total HM phytoextraction capacity was 7.56 kg center dot ha-1 for Pb and 0.307 kg center dot ha-1 for Cd. D. viscosa shows potential for phytoremediation of soils contaminated with Cd and Pb, given its capacity for establishing and developing naturally in contaminated soils with HM. Along with its bioaccumulation, biomass production, abundance, and high levels of bioconcentration factors, but without affecting plant development and not registering associated herbivores, it may incorporate HM into the trophic chain.
Heavy metal pollution of the soil affects the environment and human health. Masson pine is a good candidate for phytoremediation of heavy metal in mining areas. Microorganisms in the rhizosphere can help with the accumulation of heavy metal in host plants. However, studies on its rhizosphere bacterial communities under heavy metal pollution are still limited. Therefore, in this study, the chemical and bacterial characteristics of Masson pine rhizosphere under four different levels of heavy metal pollution were investigated using 16 S rRNA gene sequencing, soil chemistry and analysis of plant enzyme activities. The results showed that soil heavy metal content, plant oxidative stress and microbial diversity damage were lower the farther they were from the mine dump. The co-occurrence network relationship of slightly polluted soils (C1 and C2) was more complicated than that of highly polluted soils (C3 and C4). Relative abundance analysis indicated Sphingomonas and Pseudolabrys were more abundant in slightly polluted soils (C1 and C2), while Gaiella and Haliangium were more abundant in highly polluted soils (C3 and C4). LEfSe analysis indicated Burkholderiaceae, Xanthobacteraceae, Gemmatimonadaceae, Gaiellaceae were significantly enriched in C1 to C4 site, respectively. Mantel analysis showed that available cadmium (Cd) contents of soil was the most important factor influencing the bacterial community assembly. Correlation analysis showed that eight bacterial genus were significantly positively associated with soil available Cd content. To the best of our knowledge, this is the first study to investigate the rhizospheric bacterial community of Masson pine trees under different degrees of heavy metal contamination, which lays the foundation for beneficial bacteria-based phytoremediation using Masson pines in the future.
The increasing demand for mineral resources has generated mine tailings with heavy metals (HM) that negatively impact human and ecosystem health. Therefore, it is necessary to implement strategies that promote the immobilization or elimination of HM, like phytoremediation. However, the toxic effect of metals may affect plant establishment, growth, and fitness, reducing phytoremediation efficiency. Therefore, adding organic amendments to mine tailings, such as biochar, can favor the establishment of plants, reducing the bioavailability of HM and its subsequent incorporation into the food chain. Here, we evaluated HM bioaccumulation, biomass, morphological characters, chlorophyll content, and genotoxic damage in the herbaceous Crotalaria pumila to assess its potential for phytostabilization of HM in mine tailings. The study was carried out for 100 days on plants developed under greenhouse conditions under two treatments (tailing substrate and 75% tailing/25% coconut fiber biochar substrate); every 25 days, 12 plants were selected per treatment. C. pumila registered the following bioaccumulation patterns: Pb > Zn > Cu > Cd in root and in leaf tissues. Furthermore, the results showed that individuals that grew on mine tailing substrate bioaccumulated many times more metals (Zn: 2.1, Cu: 1.8, Cd: 5.0, Pb: 3.0) and showed higher genetic damage levels (1.5 times higher) compared to individuals grown on mine tailing substrate with biochar. In contrast, individuals grown on mine tailing substrate with biochar documented higher chlorophyll a and b content (1.1 times more, for both), as well as higher biomass (1.5 times more). Therefore, adding coconut fiber biochar to mine tailing has a positive effect on the establishment and development of C. pumila individuals with the potential to phytoextract and phytostabilize HM from polluted soils. Our results suggest that the binomial hyperaccumulator plant in combination with this particular biochar is an excellent system to phytostabilize soils contaminated with HM.
Heavy metal pollution in soil can impact the relationships between plants and their natural enemies. Enemy attack from herbivores and pathogens is predicted to be lower in metal-contaminated areas such as mine sites. However, whether this is the case is remains to be tested. It is also unknown how defense traits differ in polluted sites compared to adjacent sites. To address this gap in knowledge, we compared the standing leaf damage in populations of two invasive and five native plant species at the abandoned Jiuhua copper mine and an adjacent site. We also compared physical and chemical defense traits of the populations. Herbivory on four plant species was significantly lower in a copper mine than in an adjacent site. Overall, plants growing in the mine were more physically and chemically defended than plants growing adjacent to the mine. Copper hyperaccumulator species (Cynodon dactylon and Kummerowia stipulacea) increased defense levels in the mine for only one of the traits. In contrast, defenses were higher in the mine site for most traits relative to their respective adjacent populations in the non-hyperaccumulator species. Our results suggest that the damage herbivores inflict on plants may be strongly influenced by how plants respond to stressors in mine site environments, such as metal pollution. Metal hyperaccumulation and increased non-elemental defenses may be alternate responses used by plants to simultaneously deal with metal pollution and natural enemies in contaminated sites. (c) 2024 SAAB. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P <= 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P <= 0.001) abated ROS generation (O2 center dot-, center dot OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P <= 0.001) the production of non -protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P <= 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P <= 0.001), Cd (P <= 0.001), and Zn (P <= 0.01), while BAC of Cr (P <= 0.001), Cd (P <= 0.001), and Zn (P <= 0.001). Further, BCF was significant (P <= 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Biochar, plants, and earthworms have good remediation effects on cadmium (Cd)-contaminated soils. However, few studies have combined all three technologies to explore the treatment of Cd-contaminated soils. This study investigated the effect of corn straw biochar addition (1% and 5% mass ratios) on soil Cd treatment in an Eisenia fetida-Solanum nigrum system. The addition of corn straw biochar increased soil pH, total nitrogen (TN), total phosphorus (TP), and soil organic carbon (SOC); adding 5% (w/w) biochar under Cd stress resulted in significant increases (P < 0.05) of soil pH, TN, TP, and SOC. Adding 5% (w/w) biochar under Cd stress increased Cd enrichment by E. fetida and S. nigrum and significantly reduced the soil total and available Cd contents (P < 0.05). The addition of biochar increased the metallothionein content of E. fetida, which functions to resist Cd stress in high-Cd environments (P < 0.05); with the addition of 5% (w/w) biochar, the metallothionein content was 1.55 times higher than in the 1% (w/w) biochar treatment, at 23.78 ng L-1. Adding 5% (w/w) biochar significantly increased the Cd enrichment coefficient and transfer coefficient values of S. nigrum under high-Cd stress (P < 0.05), reaching 7.37 and 1.89, respectively. Adding 5% (w/w) biochar significantly reduced the exchangeable and acid-soluble fraction of Cd, increased the oxidizable fraction, reduced Cd bioavailability, and mitigated physiological damage (P < 0.05). The present study demonstrated that adding biochar to the E. fetida-S. nigrum system could effectively reduce the soil Cd pollution level, providing a new method and scientific guidance for the remediation of heavy metal-polluted soil.