共检索到 5

Under the action of freeze-thaw cycles, the internal temperature and water distribution of slope soils in cold regions change significantly, which directly affects the stability of slopes. In order to study the differences in hydrothermal reactions at different depths and their impacts on the stability of slopes. This study establishes both a freeze-thaw model and a hydrothermal coupling model, combining field measurements with numerical simulations to examine the dynamic changes in hydrothermal characteristics within the slope. The results indicate that the variation in slope temperature with depth can be divided into three stages: initial freezing, stable freezing, and thawing. In the freezing stage, the negative temperature gradient drives water to migrate towards the freezing front, forming segregated ice and inducing frost heave. In the thawing stage, the latent heat released by the phase change in segregated ice promotes water to move towards the slope toe, increasing the water content there and indirectly exacerbating the risk of slope instability. The heat and moisture transfer in frozen soil slopes shows non-linear and dynamic characteristics. The unique process of one-way freezing and two-way thawing makes the thawing rate 1.35 times that of the freezing rate, and this asymmetric characteristic is the key to understanding the mechanism of slope instability.

期刊论文 2025-03-20 DOI: 10.3390/app15063403

Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.

期刊论文 2024-12-01 DOI: 10.1016/j.ejrh.2024.102057

Considering the impact of the subgrade water level and freeze-thaw cycles, experiments were conducted on ballast track subgrade mud pumping. The study analyzed the migration of water and fine particles, as well as the characteristics of mud formation during the mud pumping process of the ballast track subgrade under cyclic loading. The research findings indicate that, during the initial loading stage at ambient temperature, moisture migrates upwards from the bottom. As dynamic loading is continuously applied, the internal pore water pressure in the subgrade soil gradually dissipates, resulting in a decrease in the pore water pressure gradient and a stabilization of the moisture content in each soil layer. When the water level is positioned in the middle of the subgrade, the upper soil is in an unsaturated state with a relatively low volumetric water content of approximately 26%. Fine particle migration does not occur, and the effective stress at the subgrade surface is much greater than zero, thus preventing mud pumping. When the water level is at the top of the subgrade, particle migration is more pronounced. The effective stress at the subgrade surface rapidly decreases to below 0 under the action of the load, resulting in mud pumping phenomena. Compared to unidirectional freezing, freeze-thaw loading results in a slower descent rate of the freezing front and a greater amount of moisture migration. Under thawing conditions, the upper soil layer of the subgrade melts before the lower soil layer, forming a frozen soil interlayer. Due to the isolation effect of the frozen soil interlayer, the upper soil layer retains a higher moisture content. Under the action of the load, the effective stress at the subgrade surface rapidly develops into negative values, making it more susceptible to mud pumping.

期刊论文 2024-11-01 DOI: 10.16285/j.rsm.2024.0018 ISSN: 1000-7598

Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.

期刊论文 2024-06-20 DOI: 10.3389/fenvs.2024.1411704

Landslide damage to soil graben slopes in seasonal freezing zones is a crucial concern for highway slope safety, particularly in the northeast region of China where permafrost thawing is significant during the spring. The region has abundant seasonal permafrost and mostly comprises powdery clay soil that is susceptible to landslides due to persistent frost and thaw cycles. The collapse of a slope due to thawing and sliding not only disrupts highway operations but also generates lasting implications for environmental stability, economic resilience, and social well-being. By understanding and addressing the underlying mechanisms causing such events, we can directly contribute to the sustainable development of the region. Based on the Suihua-Beian highway graben slope landslide-management project, this paper establishes a three-dimensional finite element model of a seasonal permafrost slope using COMSOL Multiphysics 6.1 finite element numerical analysis software. Additionally, the PDE mathematical module of the software is redeveloped to perform hydrothermal-coupling calculations of seasonal permafrost slopes. The simulation results yielded the dynamic distribution characteristics of the temperature and seepage field on the slope during the F-T process. The mechanism behind the slope thawing and sliding was also unveiled. The findings provide crucial technical support for the rational analysis of slope stability, prevention of sliding, and effective control measures, establishing a direct linkage to the promotion of sustainable infrastructure development in the context of transportation and roadway engineering.

期刊论文 2024-02-01 DOI: 10.3390/su16041623
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页