Improper anti-drainage treatment of weakly expansive soil subgrades can lead to significant post-construction deformation and uneven settlement, which severely affect the operational safety and service life of engineering projects. To comprehensively analyze the evolution of soil volume and strength under different hydraulic coupling paths during wetting-drying (W-D) cycles, a loaded W-D cycle testing device was developed. Soil volume was measured during the W-D cycles, and the shear strength and soil-water characteristic curves were analyzed after different cycles. The results indicate that during the W-D cycles, changes in soil volume and strength exhibited distinct stages with similar evolution characteristics. Under the investigated loading conditions, the soil demonstrated significant collapsibility during the wetting process, which gradually diminished as the number of cycles increased. Eventually, the W-D cycles caused the soil to reach an equilibrium state, where its swelling and shrinkage behavior became nearly elastic. At equilibrium state, there is a corresponding void ratio for any moisture content, which is the elastic void ratio (e0el). The e0el is irrespective of the number of cycles and initial dry density. Conversely, higher load and larger amplitude in W-D cycles tend to decrease the e0el. Furthermore, by correlating the unsaturated soil matric suction, secant modulus, and stress path, the volume evolution mechanism of the soil was analyzed based on the soil effective stress theory and pore evolution. The results of this study can serve as a crucial reference point for revealing the deformation mechanism of weakly expansive soil subgrades and selecting appropriate road settlement control methods.
In this paper, the findings presented by Barron (1948) have been corroborated by way of a hydraulic-mechanical coupled finite element analysis. Specifically, the FEM analysis was conducted using a poroelasticity approach in combination with a transient formulation that incorporates Darcy's law. This study highlights the fact that variations in pore pressure dissipation between the coupled FEM analysis of this study and Barron's theoretical analysis are minimal. The coupled FEM simulations confirm Barron's conclusions that, as the well diameter ratio (n) increases, the rate of pore water pressure dissipation decreases. Ultimately, for design purposes, a stress field is also required and consequently, a coupled FEM analysis is necessary. On this basis, results indicate high shear stress concentrations near the upper and lower boundaries, while the mean effective stress decreases from the well bore boundary.
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of great significance for revealing the mechanism of hydraulic interaction. This study conducts isotropic compression and undrained shear tests on unsaturated compacted loess, simultaneously introducing the strength parameter eta to enhance the Glasgow coupled model (GCM). The objective is to elucidate the hydraulic and mechanical coupling mechanism, where saturation increases under mechanical effects lead to strength degradation. The results show that saturation increases under mechanical effects improve the compressibility of the sample, and saturation has a direct impact on the stress-strain relationship. The increase in water content and confining pressure increases the trend of the critical state stress ratio M decreasing, and the strain softening trend increases. The compression of volume during shear tests increases the saturation, changes the hydraulic characteristics of loess, and affects the deformation and strength of loess. The modified GCM improves the applicability and prediction accuracy of unsaturated loess under the same initial state. The research results are of great significance for revealing the hydraulic and mechanical behavior of loess.