共检索到 2

Evaluating the seismic vulnerability of facades of historic masonry buildings is essential not only for their significant historical and heritage value, but also to evaluate the safety of this type of construction. This work applies a simplified methodology to assess the seismic vulnerability of the facade of masonry buildings in the historic center of Morelia, Michoac & aacute;n, M & eacute;xico. The historic center of Morelia was declared a World Cultural Heritage Site by UNESCO in 1991. On the facades, there is ornamentation with sculptural and vegetal decorative elements. The methodology involved conducting visual inspections to identify the location, type of structure, construction materials, doors, windows, balconies, cornices, ironwork, pediments, niches, and sculptures, among other characteristic elements of colonial architecture. The seismic demands were determined specifically for the city's historic center based on a recent seismic hazard assessment of Morelia. Based on the methodology and the compiled database, characterized vulnerability indices were defined for the different damage scenarios that buildings may present. Results indicate that earthquakes with intensities greater than VIII on the Modified Mercalli scale risk collapsing heritage masonry buildings' facades.

期刊论文 2024-10-01 DOI: 10.3390/buildings14103148

The 1755 Lisbon earthquake holds significant historical importance in Portuguese history. The subsequent tsunami resulted in extensive destruction and damage, affecting not only Lisbon but also other regions of Portugal, Spain, and North Africa. This significant and hazardous event led to an increase in awareness about earthquake and tsunami risks, not only within Portugal but throughout Europe. This heightened awareness facilitated advancements in scientific developments, including design codes, standards, and earthquake engineering. However, recent studies focusing on hazard assessment for Lisbon are limited. For this reason, this paper aims to present a comprehensive probabilistic seismic hazard analysis (PSHA) for the Lisbon metropolitan area. The first stage of PSHA involves defining applicable and active seismic source models (area and line sources) within the study area. Subsequently, historical and instrumental earthquake records are collected to build a homogenized earthquake catalog, utilizing both global and local earthquake databases. Following this, the completeness level of the earthquake catalog is tested. By incorporating suitable ground motion models to the region and local soil characteristics, seismic hazard maps for various return periods and hazard curves in terms of peak ground acceleration (PGA) are developed. The findings based on the area source model agree with existing literature, indicating PGA values ranging from 0.3 g to 0.9 g, 0.2 g to 0.7 g, 0.2 g to 0.5 g, and 0.1 g to 0.3 g for return periods of 2475, 975, 475, and 50 years, respectively.

期刊论文 2024-09-01 DOI: 10.3390/geohazards5030047
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页