共检索到 13

The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding integrated carbon dynamics in Arctic and boreal regions, which are vital to the global carbon cycle. These areas are associated with significant uncertainties and rapid climate change, potentially leading to unpredictable alterations in carbon dynamics. This mini-review examines key components of NECB, including carbon sequestration, methane emissions, lateral carbon transport, herbivore interactions, and disturbances, while integrating insights from recent permafrost region greenhouse gas budget syntheses. We emphasize the need for a holistic approach to quantify the NECB, incorporating all components and their uncertainties. The review highlights recent methodological advances in flux measurements, including improvements in eddy covariance and automatic chamber techniques, as well as progress in modeling approaches and data assimilation. Key research priorities are identified, such as improving the representation of inland waters in process-based models, expanding monitoring networks, and enhancing integration of long-term field observations with modeling approaches. These efforts are essential for accurately quantifying current and future greenhouse gas budgets in rapidly changing northern landscapes, ultimately informing more effective climate change mitigation strategies and ecosystem management practices. The review aligns with the goals of the Arctic Monitoring and Assessment Program (AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important insights for policymakers, researchers, and stakeholders working to understand and protect these sensitive ecosystems.

期刊论文 2025-04-07 DOI: 10.3389/fenvs.2025.1544586

The widespread distribution of wolf poison (Stellera chamaejasme L.), spanning from southern Russia to southwestern China and the western Himalayas, contributes to its prevalence as an invasive species in grassland ecosystems. Its extensive range, coupled with its ability to thrive in harsh environments, enables it to rapidly colonize grasslands. Once established, it rapidly spreads and dominates large areas. This process inevitably leads to grassland degradation over time, thereby exerting significant impacts on both ecology and economy. In China, grasslands (26.45 million ha, 27.5% of land area) face severe degradation, with more than 90% impacted by overgrazing and climate change. Stellera chamaejasme infestations exceed 1.4 million ha in Qinghai, 546,700 ha in Gansu, and 133,000 ha in Inner Mongolia, causing annual forage losses of 137,500 Mg and economic damages of 15 to 20 million yuan in Gansu alone. These impacts threaten ecosystem stability and pastoral livelihoods. Therefore, research on the mechanisms of spread of invasive plants is crucial. In this comprehensive description, we investigated the effects of S. chamaejasme on plant communities and herbivore interactions. Our research showed how this species successfully invades grasslands and establishes itself as a dominant species. Stellera chamaejasme enhances its expansion by altering soil physicochemical properties, reducing nutrient cycling, and increasing pathogenic fungi abundance while enhancing microbial diversity, creating self-favoring soil conditions. With high genetic diversity, robust reproductive capacity, and potent allelopathic effects, it suppresses neighboring vegetation and escapes herbivory due to toxicity, accelerating invasion. These interrelated traits facilitate the rapid invasion and spread of S. chamaejasme on grasslands, ultimately leading to its dominance. This trend poses a significant threat to the health and stability of the grassland ecosystem. Future research should delve into the ecological adaptability and allelopathic mechanisms of S. chamaejasme, aiming to develop effective management strategies for controlling its spread and promoting grassland recovery and biodiversity conservation.

期刊论文 2025-03-19 DOI: 10.1017/wsc.2025.12 ISSN: 0043-1745

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.

期刊论文 2025-01-01 DOI: 10.1002/ecy.4498 ISSN: 0012-9658

Ecological theory predicts that herbivory should be weaker on islands than on mainland based on the assumption that islands have lower herbivore abundance and diversity. However, empirical tests of this prediction are rare, especially for insect herbivores, and those few tests often fail to address the mechanisms behind island-mainland divergence in herbivory. In particular, past studies have not addressed the relative contribution of top-down (i.e. predator-driven) and bottom-up (i.e. plant-driven) factors to these dynamics. To address this, we experimentally excluded insectivorous vertebrate predators (e.g. birds, bats) and measured leaf traits associated with herbivory in 52 populations of 12 oak (Quercus) species in three island-mainland sites: The Channel Islands of California vs. mainland California, Balearic Islands vs. mainland Spain, and the island Bornholm vs. mainland Sweden (N = 204 trees). In each site, at the end of the growing season, we measured leaf damage by insect herbivores on control vs. predator-excluded branches and measured leaf traits, namely: phenolic compounds, specific leaf area, and nitrogen and phosphorous content. In addition, we obtained climatic and soil data for island and mainland populations using global databases. Specifically, we tested for island-mainland differences in herbivory, and whether differences in vertebrate predator effects or leaf traits between islands and mainland contributed to explaining the observed herbivory patterns. Supporting predictions, herbivory was lower on islands than on mainland, but only in the case of Mediterranean sites (California and Spain). We found no evidence for vertebrate predator effects on herbivory on either islands or mainland in any study site. In addition, while insularity affected leaf traits in some of the study sites (Sweden-Bornholm and California), these effects were seemingly unrelated to differences in herbivory. Synthesis. Our results suggest that vertebrate predation and the studied leaf traits did not contribute to island-mainland variation patterns in herbivory, calling for more nuanced and comprehensive investigations of predator and plant trait effects, including measurements of other plant traits and assessments of predation by different groups of natural enemies. La teor & iacute;a ecol & oacute;gica predice que la herbivor & iacute;a ha de ser m & aacute;s d & eacute;bil en las islas que en el continente, ya que las islas tienen una menor abundancia y diversidad de herb & iacute;voros. Sin embargo, todav & iacute;a no contamos con suficiente evidencia emp & iacute;rica que apoye estas predicciones, especialmente en lo que se refiere a la herbivor & iacute;a por insectos, y los pocos estudios que existen a menudo no abordan los mecanismos que generan estos patrones de divergencia entre islas y continente en los niveles de herbivor & iacute;a. En particular, las investigaciones previas no han examinado la contribuci & oacute;n relativa de las fuerzas top-down (es decir, efectos mediados por los depredadores) y bottom-up (es decir, efectos mediados por los rasgos funcionales de las plantas) en estas din & aacute;micas. En este trabajo, excluimos experimentalmente a depredadores insect & iacute;voros vertebrados (p. ej., aves, murci & eacute;lagos) y medimos rasgos foliares asociados con la herbivor & iacute;a en 52 poblaciones de 12 especies de robles (Quercus) en tres sitios insulares y continentales: las Islas del Canal de California vs. California continental, las Islas Baleares vs. Espa & ntilde;a continental, y la isla de Bornholm vs. Suecia continental (N = 204 & aacute;rboles). En cada sitio, al final de la & eacute;poca de crecimiento, medimos el da & ntilde;o foliar causado por insectos herb & iacute;voros en ramas control vs. ramas con exclusi & oacute;n de depredadores, y medimos diferentes rasgos foliares, en particular, la concentraci & oacute;n de compuestos fen & oacute;licos, el & aacute;rea foliar espec & iacute;fica y el contenido de nitr & oacute;geno y f & oacute;sforo. Adem & aacute;s, obtuvimos datos clim & aacute;ticos y de suelo de las poblaciones insulares y continentales utilizando bases de datos globales. Espec & iacute;ficamente, evaluamos los efectos de la insularidad sobre la herbivor & iacute;a y si exist & iacute;an patrones contrastados de los efectos de depredaci & oacute;n y expresi & oacute;n de rasgos foliares entre islas y continentes que contribuyesen a explicar los patrones observados en la herbivor & iacute;a. De acuerdo con la teor & iacute;a ecol & oacute;gica, la herbivor & iacute;a fue menor en las islas en comparaci & oacute;n con el continente, pero solo en el caso de los sitios mediterr & aacute;neos (California y Espa & ntilde;a). No encontramos evidencia de efectos de los depredadores sobre la herbivor & iacute;a en ninguno de los sitios de estudio, ya sea en las islas o en el continente. Adem & aacute;s, aunque la insularidad afect & oacute; a la expresi & oacute;n de rasgos foliares en algunos de los sitios de estudio (Suecia-Bornholm y California), estos efectos no estuvieron aparentemente relacionados con las diferencias observadas en la herbivor & iacute;a. S & iacute;ntesis. Nuestros resultados sugieren que la depredaci & oacute;n por vertebrados y los rasgos foliares estudiados no contribuyeron a los patrones de variaci & oacute;n entre islas y continente observados en los niveles de herbivor & iacute;a, lo que plantea la necesidad de investigaciones m & aacute;s exhaustivas que incluyan la evaluaci & oacute;n de otros rasgos funcionales y evaluaciones de la depredaci & oacute;n por otros grupos de enemigos naturales de los herb & iacute;voros.

期刊论文 2025-01-01 DOI: 10.1111/1365-2745.14444 ISSN: 0022-0477

Drought may impact plant-soil biotic interactions in ways that modify aboveground herbivore performance, but the outcomes of such biotic interactions under future climate are not yet clear. We performed a growth chamber experiment to assess how long-term, drought-driven changes in belowground communities influence plant growth and herbivore performance using a plant-soil feedback experimental framework. We focussed on two common pasture legumes-lucerne, Medicago sativa L., and white clover, Trifolium repens L. (both Fabaceae)-and foliar herbivores-cotton bollworm, Helicoverpa armigera (H & uuml;bner) (Lepidoptera: Noctuidae), and two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Soil was collected from a field facility where rainfall had been manipulated for 6 years, focussing on treatments representing ambient rainfall and prolonged drought (50% reduction relative to ambient), to consider the effects of biological legacies mediated by the prolonged drought. All soils were sterilized and re-inoculated to establish the respective home (i.e. where a given plant is cultivated in its own soil) and away (i.e. where a given plant is cultivated in another species' soil) treatments in addition to a sterile control. We found that the relative growth rate (RGR) and relative consumption of larvae were significantly lower on lucerne grown in soil with ambient rainfall legacies conditioned by white clover. Conversely, the RGR of insect larvae was lower on white clover grown in soil with prolonged drought legacies conditioned by lucerne. Two-spotted spider mite populations and area damage (mm2) were significantly reduced on white clover grown in lucerne-conditioned soil in drought legacies. The higher number of nodules found on white clover in lucerne-conditioned soil suggests that root-rhizobia associations may have reduced foliar herbivore performance. Our study provides evidence that foliar herbivores are affected by plant-soil biotic interactions and that prolonged drought may influence aboveground-belowground linkages with potential broader ecosystem impacts.

期刊论文 2025-01-01 DOI: 10.1111/eea.13514 ISSN: 0013-8703

Plants and insects have co-evolved over millions of years, resulting in complex and dynamic interactions that have shaped the biodiversity of our planet. Plant-insect relationships may exhibit features of mutualism, antagonism and commensalism. Plant-insect interactions have significant implications for agroecosystem functioning and services. Thus, understanding the complex relationships between plants and insects is critical for sustainable agriculture and ecosystem management. These interactions are also critical to the interplay between agroecosystems and their ecological implications for the sustainability of agriculture production. This review aimed to explore the chemical, molecular and ecological interactions between agriculture and insects for the benefit of agroecosystems. Literature synthesis and analysis based on a thorough compilation of several investigations were carried out on plant-insect interactions using relevant key terms and criteria. Curation of data was based on databases and resources such as Scopus, Web of Science, Google Scholar, PubMed, PubChem, and Gene Ontology. The evolution of a range of adaptations by insects to exploit plant resources, as well as the diversity of chemical and molecular mechanisms in plants as defense strategies are also highlighted. Moreover, issues of pest management, natural enemies, soil health and nutrient recycling and pollination that are pertinent to these interactions are discussed. Improved plant-insect interactions can result from encouraging habitat restoration by creating or restoring habitats for beneficial insects, such as by planting native flowering plants or providing bees with places to nest. Interaction between plants and insects can also be improved by promoting conservation and bolstering conservation practices in agroecosystems.

期刊论文 2024-12-31 DOI: 10.1080/23311932.2024.2379606 ISSN: 2331-1932

Alpine grasslands are vital in regulating carbon balance on the Qinghai-Tibetan Plateau (QTP) because of the large soil organic carbon (SOC) stocks, while persistent disturbance from the endemic small semifossorial herbivore, plateau pika (Ochotona curzoniae, hereafter pika), may break this balance. Pika affect the soil microclimate by creating a heterogeneous underlying surface, which is expected to alter soil microbial communities and eventually SOC stocks. However, our knowledge regarding the potential influence mechanism is still limited. Here, we investigated vegetation biomass, soil properties and soil microbes among 4 different surfaces (i.e., original vegetation, new pika pile, old pika pile and bare patch) of typical alpine grasslands to reveal soil microbial communities and the associated effect on SOC in response to pika bioturbation. Our results showed that pika bioturbation increased both bacterial and fungal diversity and their phyla abundance for SOC decomposition. Vegetation biomass, electrical conductivity and NH4+-N accounted for the variation in both bacterial and fungal community compositions and diversity. SOC stocks were 15-30% lower in pika piles and bare patches than in the original vegetation, which was mainly attributed to the reduced soil organic matter input from vegetation and the enhanced SOC consumption by soil microbial communities. Overall, we conclude that pika bioturbation altered the diversity and composition of soil microbial communities, which was associated with SOC loss and positive carbon feedback in alpine grasslands. Our findings provide insights into the role of small semifossorial herbivores in the carbon cycle of global grasslands.

期刊论文 2024-11-29 DOI: http://dx.doi.org/10.1016/j.gecco.2023.e02561

As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tritrophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.

期刊论文 2024-11-01 DOI: 10.1016/j.jip.2024.108200 ISSN: 0022-2011

Trichomes play a key role in both heavy metal tolerance and herbivory defense, and both stressors have been shown to induce increased trichome density. However, the combined effect of these stressors on trichome density in general, and specifically on metal-hyperaccumulating plants, has yet to be examined. The aim of this study was to test the effect of cadmium availability and herbivory on leaf trichome density and herbivore deterrence in the metal hyperaccumulator Helianthus annuus. To test this, H. Annuus plants were grown in control pots or pots inoculated with 10 mg/kg cadmium and were subjected to either no herbivory or simulated herbivory using mechanical damage and foliar jasmonic acid application. Herbivore deterrence was tested in a feeding assay using Spodoptera littoralis caterpillars. Interestingly, while the trichome density of H. annuus increased by 79% or 53.5% under high cadmium availability or simulated herbivory, respectively, it decreased by 26% when the stressors were combined. Furthermore, regardless of cadmium availability, simulated herbivory induced a 40% increase in deterrence of S. littoralis. These findings suggest that the combination of metal availability and herbivory might present excessive stress to hyperaccumulators. Moreover, they suggest that the risk of metal bioaccumulation in phytoremediation can be reduced by simulated herbivory.

期刊论文 2024-10-01 DOI: 10.3390/plants13192733 ISSN: 2223-7747

Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.

期刊论文 2024-08-01 DOI: 10.1017/S0007485324000208 ISSN: 0007-4853
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页