Landslides are mass movements of rock, soil, or debris under the influence of gravity. These phenomena occur due to the loss of slope stability or imbalance of external loads. The intensity and consequences of landslides depend on various factors such as topography, geological structure, and precipitation regime. This study investigates the characteristics of rainfall-induced landslides in red basaltic soils on the basis of field investigations, geotechnical surveys, and slope stability modeling under anthropogenic triggers. The results indicate a close relationship between soil moisture and shear strength parameters, which significantly influence slope stability. A real-time observation system recorded groundwater level fluctuation in relation to surface runoff and precipitation rates. It is revealed that intense rainfall and low temperatures regulate soil moisture, resulting in a reduction of cohesion and shear strength parameters. These findings enhance the understanding of landslide mechanism in basaltic soil regions, which are highly sensitive to precipitation. The results also highlight that human activities play a significant role in triggering landslides. Therefore, a real-time monitoring system for rainfall, soil moisture, and groundwater is essential for early warning and supports the integration of smart technologies and Internet of Things (IoT) solutions in natural disaster management.
Seepage deformation in sand results from complex water-soil interactions, which are the primary reasons of sand surface collapse, as well as instability and deformation in dam foundations, building foundations, and slopes. Frequent fluctuations in groundwater levels cause changes in the direction, velocity, and pore water pressure of groundwater within the sand. Further research is essential to fully understand the characteristics and mechanisms of sand seepage deformation under varying groundwater conditions. In this study, natural undisturbed sand samples were collected. Laboratory seepage deformation tests were conducted to simulate continuous rises and falls in groundwater levels, exploring the response characteristics of internal erosion and hydraulic behavior of the sand under varying groundwater flow rates and directions. The results show that: As groundwater flow rate increases, the sand undergoes multiple episodes of seepage deformation, which includes the processes of structural stability, seepage deformation, and seepage failure. Initially, the hydraulic gradient for seepage deformation is small, and the particles carried by seepage are small. With a further increase in groundwater flow velocity, the hydraulic gradient rises, larger sand particles are migrated by seepage, and seepage failure may eventually occur. When the karst groundwater level is lower than the elevation of the sand bottom (H-2 < z(2)) and the sand bottom is in a negative pressure state, the hydraulic gradient of seepage deformation is usually smaller than that observed in the other two states of positive pressure. In these cases, pore water pressure exerts an upward buoyant force, while in the negative pressure state, the pore water pressure transforms into downward suction. This downward suction aligns with the direction of gravitational forces and downward seepage force acting on the sand, making seepage deformation of the sand more likely. Sands with greater unevenness, finer particle, and lower density are more prone to seepage deformation but failure at different hydraulic gradients.
This paper examines the thermo-hydro-mechanical (THM) coupling behavior of layered transversely isotropic media under axisymmetric and plane strain conditions by utilizing the transformed differential quadrature method (TDQM), taking groundwater into consideration. Initially, the coupled governing equations of layered transversely isotropic media in multi-dimensional coordinate systems are established with considering the influence of groundwater levels. Subsequently, appropriate integral transform methods are applied to derive ordinary differential equations under different coordinate systems. It can be seen that the equations in different coordinate systems after the discretization are similar. Boundary conditions and internal continuity conditions are defined through the stress-strain relationship in the transformed domains, which are integrated into the discretized equations to form the global matrix equations. After solving the matrix equations, this study verifies the solution and investigates the impact of groundwater levels and the key parameters of transverse isotropy, and compares the behaviors of the media in different coordinate systems.
Monitoring groundwater levels and soil moisture content (SMC) is crucial for managing water resources and assessing risks, but can be challenging, especially over large acreages. Recent advances in geophysical methods provide new opportunities for accurate groundwater assessment. Seismic wave speed data, sensitive to changes in pore water pressure, can be used in a passive monitoring approach, while electrical conductivity data can be used for monitoring SMC. Combining seismic and electromagnetic induction (EMI)-based monitoring techniques enhances our understanding of groundwater dynamics. Seismic methods enable wide spatial coverage with moderate depth resolution, whereas EMI offers high-resolution, rapid data acquisition, particularly effective for shallow subsurface monitoring. Integrating these approaches can leverage the strengths of each, yielding comprehensive, high-resolution insights into dynamic subsurface hydrological processes. Integrating these approaches allows for improved groundwater monitoring, aiding in better understanding and managing droughts in regions like the Netherlands.
The intensification of extreme weather phenomena, ranging from torrential downpours to protracted dry spells, which trigger fluctuations at the groundwater level, poses a grave threat to the stability of embankments, giving rise to an array of concerns including cracking and differential settlement. Consequently, it is crucial to embark on research targeted at uncovering the settlement and deformation behaviors of pile-supported embankments amidst changes in water levels. In tackling this dilemma, a series of direct shear tests were carried out across a range of wet-dry cyclic conditions. The results confirmed that the occurrence of wet-dry cycles significantly impacted the resilience of silty clay. Additionally, it was observed that the erosion of cohesion and the angle of internal friction initially diminished sharply, subsequently leveling off, with the first wet-dry cycle exerting the most substantial influence on soil strength. Employing a holistic pile-supported embankment model, simulations revealed that variations in the groundwater level, fluctuations therein, varying descent rates, and periodic shifts in the groundwater level could all prompt alterations in soil settlement between embankment piles and could augment the peak tensile stress applied to geogrids. In summary, the orthogonal experimental method was utilized, indicating that, in terms of impacting embankment settlement under periodic water-level changes, the factors ranked in descending order were the following: pile spacing, pile length, embankment height, and the height of the groundwater table.
The development of land subsidence has seriously affected the safe operation of Beijing-Tianjin high-speed railway. The South-to-North Water Diversion Project Central Route (SNWDP-CR) was officially put into operation in December 2014. It has changed the water supply pattern in Beijing and provided conditions for reducing groundwater exploitation and controlling land subsidence. In this paper, the time-series interferometric data, in situ monitoring data of recent 20 years and the basic geological datasets are combined to compare and analyze the changes of groundwater level, land subsidence and the main subsidence layers along the Beijing-Tianjin high-speed railway before and after the SNWDP-CR. The effects of the environment of Quaternary sedimentary, groundwater exploitation and soil deformation of different lithology on land subsidence along the high-speed railway under the background of new water conditions are revealed. The main conclusions are as follows: 1) The serious land subsidence area along the Beijing-Tianjin high-speed railway always concentrated in the of DK11-DK23. After the operation of SNWDP-CR, the land subsidence along the railway generally showed a slowing trend. The maximum subsidence rate was reduced from 80 mm/yr to 49 mm/yr. The length of subsidence rate that more than 50 mm/yr of the was reduced from 8.0 km to 0 km. 2) The groundwater level of different aquifer groups along the Beijing-Tianjin high-speed railway rose and declined before and after the SNWDP-CR. in eastern part of the plain, the groundwater level of each aquifer group has changed from a continuous decline (range 0.13-1.82 m) to a gradual rise (range 0.45-1.87 m) since 2017. However, in the southeast of the plain, the groundwater level still showed a continuous decline trend, with an average annual decline of 1.2-1.8 m. 3) From 2006 to 2019, the subsidence of the first, second and third compression layer group along the railway accounted for 2.71%, 28.29% and 69%, respectively. The third compression layer group (monitoring layer 94-182 m) had the largest subsidence proportion and was the main subsidence layer. 4) The land subsidence along the Beijing-Tianjin high-speed railway is controlled by the basement structure. The difference of groundwater exploitation intensity led to differences in the spatial distribution of land subsidence along the railway. The subsidence of the soil layer below the bearing layer (about 50 m) of the high-speed railway pile foundation exhibited the characteristics of viscoplastic or viscoelastic plasticity deformation. This of strata is a key layer that needs to be considered for land subsidence control along the Beijing-Tianjin high-speed railway in the future.
Extreme precipitation events (EPEs) are projected to become more frequent and intense due to global warming. Understanding how coastal groundwater levels respond to and recover from these severe events is important for estuarine ecosystems to adapt to global change. Numerical model and non-EPE scenario simulation were used to examine groundwater level recovery time (RT) after Super Typhoon Lekima, which triggered EPEs that resulted in groundwater rise and widespread flooding in the Yellow River Delta (YRD). The three-day rainfall during Lekima totaled 290.9 mm, equivalent to 50 % of the annual rainfall for 2019 (581.5 mm), leading to a general rise in groundwater levels. Groundwater recovery to EPE can be divided into two types: inland and coastal. The RT of groundwater levels in monitoring wells in inland areas ranged from 12 to 89 days, with an average of 56.2 days, and there was spatial variation. However, groundwater levels in monitoring wells close to the coast may not recover. Differences in recovery are reflected in the land-sea gradient, with RT gradually increasing from inland highlands to coastal depressions and lowlands. The results showed that inland aquifers were more resistant to EPEs, while coastal aquifers were less resistant. In addition, EPE can cause groundwater flooding, and areas at lower altitude and close to the sea are more sensitive to flooding. Estuarine groundwater and the ecological processes on which it depends are profoundly affected by the direct and legacy effects of EPEs, including salt contamination, widespread flooding, crop damage, and reduced biodiversity. The study of this event provides case support for the response of estuarine groundwater to EPEs, while highlighting the importance of continuous monitoring.
Supra-permafrost groundwater (SPG) is a key factor that causes damage to highways and railways in the Qinghai-Tibet Engineering Corridor (QTEC). It is difficult to monitor SPG in the field due to their complex formation mechanisms and movement characteristics. Traditional single-site field monitoring studies limit the spatial and temporal precision of SPG spatial distribution. To determine the moisture content of shallow soils and the SPG distribution along the QTEC, this work employed the temperature vegetation dryness index and remote sensing models for groundwater table distribution models. The accuracies of the models were validated using measurements obtained from different sites in the corridor. In the permafrost zones of the QTEC, 72%, 22% and 6% of the SPG were located at depths of 0.5-1, 1 m, respectively. Meanwhile, 79.4% of the area along the Qinghai-Tibet Highway (QTH) (Xidatan-Tanggula) contained SPG. In these sections with SPG, 37.9% have an SPG table at depths of 0.5-0.8 m. This study preliminarily explored the SPG distribution in the QTEC with a 30 m resolution. The findings can help improve the spatial scale of SPG research, provide a basis for the analysis of the hydrothermal mechanisms, and serve as a guide in the assessment of operational risks and road structure designs.
Immense liquefaction damage was observed in the 2011 off the Pacific coast of Tohoku Earthquake. It was reported that, in Chiba Prefecture, Japan, the main shock oozed muddy water from the sandy ground and the aftershock which occurred 29 min after the main shock intensified the water spouting; thus, the aftershock expanded the liquefaction damage in the sandy ground. For comprehending such a phenomenon, using a soil-water-air coupled elastoplastic finite deformation analysis code, a rise in groundwater level induced by main shock is demonstrated, which may increase the potential of liquefaction damage during the aftershock. The authors wish to emphasize that these results cannot be obtained without soil-water-air coupled elastoplastic finite deformation analysis. This is because the rise in groundwater level is caused by the negative dilatancy behavior (plastic volume compression) of the saturated soil layer which supplies water to the upper unsaturated soil layer, and it is necessary to precisely calculate the settlement of ground and the amount of water drainage/absorption to investigate the groundwater level rise. This study provides insight into the mechanism of ground liquefaction during a series of earthquakes.
The hydrological response of groundwater to rainfall plays a key role in the initiation of deep-seated bedrock landslides; however, the mechanisms require further investigation due to the complexity of groundwater movement in fissured bedrock. In this study, an active translational landslide along nearly horizontal rock strata was investigated. The hydrological response of groundwater to rainfall was analyzed, using the data from a four-year real-time field monitoring program from June 2013 to December 2016. The monitoring system was installed along a longitudinal of the landslide with severe deformation and consisted of two rainfall gauges, nine piezometers, three water-level gauges, and two GPS data loggers. Much research effort has been directed to exploring the relationship between rainfall and groundwater response. It is found that both the pore-water pressure (PWP) and groundwater level (GWL) responses were significantly influenced by the rainfall pattern and the hydrological properties of the underlying aquifer. The rapid rise and fall of PWP and GWL were observed in the rainy season of 2013 with high-frequency, long-duration, and high-intensity rainfall patterns, especially in the lower of the landslide dominated by the porous aquifer system. In contrast, a slower and prolonged response of PWP and GWL to rainfall was observed in most monitoring boreholes in 2014 and 2015 with two rainstorms of short duration and high intensity. In the lower of the landslide, the peak GWL exhibited a stronger correlation with the cumulative rainfall than the daily rainfall in a single rainfall event whereas the peak groundwater level fluctuation (GWLF) exhibited a strong correlation with API with a half-life of 7 days. In the middle of the landslide, however, relatively lower correlation between rainfall and groundwater response was observed. Three types of groundwater flow were identified based on the recession coefficients of different segments of water-level hydrographs in the landslide area, corresponding to the quick flow through highly permeable gravely soil and well-developed vertical joints in the bedrock, the slow and diffuse flow through the relatively less-permeable bedrock, and the transition between them in the aquifer system.