共检索到 8

As the global population continues to grow, achieving ecological sustainability and ensuring food production have become urgent challenges. Among various environmental stresses, heavy metals, particularly cadmium (Cd), pose a significant threat to plant growth and development. Breeding cadmium-resistant crop varieties that minimize Cd accumulation is therefore crucial for promoting sustainable agriculture. In response to Cd stress, plants undergo a series of regulatory mechanisms, including DNA methylation, chromatin remodeling, and histone acetylation, to mitigate cellular damage. Understanding the epigenetic responses of plants to cadmium stress is a key research area that holds substantial significance for both agriculture and environmental biology. This article reviews the current research on plant responses to cadmium stress and the underlying mechanisms of their epigenetic responses, aiming to provide theoretical insights for analyzing the epigenetic mechanisms of heavy metal stress in major crops. We can leverage genomics, single-cell sequencing, stereo-seq, and other advanced technologies in conjunction with epigenomics, plant genetics and molecular biology techniques to conduct comprehensive and in-depth studies on the epigenetic changes that occur in plants following Cd exposure. Systematically elucidating the molecular mechanisms by which plants perceive and respond to Cd stress will aid in the development of more effective bioremediation strategies for heavy metal-contaminated soils and facilitate.

期刊论文 2025-05-30 DOI: 10.3389/fpls.2024.1489155 ISSN: 1664-462X

This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg-1 soil). The PENP pollution led to severe changes in plant morphogenesis. The PENP treatments were associated with decreased plant biomass, reduced internode length, delayed flowering, and prolonged fruit ripening. Abnormal inflorescences, flowers, and fruits observed in the PENP-exposed seedlings support genetic changes and meristem dysfunction. Exposure of seedlings to PENP increased H2O2 accumulation and damaged membranes, implying oxidative stress. The PENP treatments induced activities of catalase (EC1.11.1.6), peroxidase (EC1.11.1.7), and phenylalanine ammonia-lyase (EC4.3.1.24) enzymes. Soil contamination with PENP also decreased the net photosynthesis, maximum photosystem efficiency, stomatal conductance, and transpiration rate. The nanopollutant upregulated the expression of the histone deacetylase (HDA3) gene and R2R3MYB transcription factor. However, the AP2a gene was down-regulated in response to the PENP treatment. Besides, EPNP epigenetically contributed to changes in DNA methylation. The concentrations of proline, soluble phenols, and flavonoids also displayed an upward trend in response to the applied PENP treatments. The long-term exposure of seedlings to PENP influenced fruit biomass, firmness, ascorbate, lycopene, and flavonoid content. These findings raise concerns about the hazardous aspects of PENP to agricultural ecosystems and food security.

期刊论文 2025-03-01 DOI: 10.1016/j.plaphy.2025.109523 ISSN: 0981-9428

Genotoxic agents are substances that can induce DNA damage; this damage can be caused by chemical, biological, and physical agents. The dose, time and route of exposure, and the genetic constitution of the individual influence the capacity of these agents to induce damage and may also be related to lifestyle habits and place of residency. Directly associated with genotoxicity is epigenetics, which is the study of hereditary changes in the function of hereditary genes not attributed to alterations in the DNA sequence. These processes regulate the expression of genes through the modulation of chromatin structure. The interaction of genetic and non-genetic factors in the control of hereditary patterns of this expression may cause diseases or disorders such as cancer, infertility, inflammatory processes, degenerative diseases, and endocrine disruption that could be transmitted to the offspring. Several epidemiological studies have shown that changes in lifestyle and eating habits could prevent or reduce cancer incidence; particularly by increasing the level of antioxidants and reducing the formation of free radicals with intracellular effects. At the Biotechnology Research Center of the Technological Institute of Costa Rica, various genotoxic agents to which the population in Costa Rica is exposed are investigated, including bacteria such as Helicobacter pylori, micro plastics in marine species for human consumption, and heavy metals in drinking water and in soils. These investigations are relevant to determine the presence of these genotoxic agents in the country, to evaluate the risk of exposure of the population, and thus generate strategies for prevention and mitigation of the damage.

期刊论文 2024-11-01 DOI: 10.18845/tm.v37i9.7622 ISSN: 0379-3982

Between 1925 and 1930, 11 or 12 non-native mountain goats (Oreamnos americanus) were translocated from Alaska and British Columbia to the foothills of the Olympic Range. By 1970, descendants of these goats had colonized the entire range and concerns about the management of this introduced species developed as damage to alpine soil and vegetation occurred. A series of removals reduced the population from 1175 in 1983 to 389 by 1990, eventually growing to 584 in 2016. We used demographic and genetic data to parameterize a population genetics individual-based simulation model of the Olympic Range mountain goats. We calibrated the model to replicate the population trajectory for Olympic mountain goats from establishment in the 1920s through the 1983 first census. As expected, modeled population dynamics from 1928 to 1983 mimicked parameter initialization from expanding populations. However, simulated heterozygosity did not align with observations, suggesting a process not accounted for within the simulation model, such as a bottleneck or founder effect. Sensitivity analyses showed changes in annual reproductive rate, juvenile mortality, and adult female mortality influencing population trajectories, but variation in male mortality revealed no changes. Evaluating the population dynamics of the model after removals showed that approximately 80% of the total animals removed during the 1980s needed to be female in order for the observed population estimates to occur. This model has the potential to be used more widely with established or introduced mountain goat populations, as well as to provide an approach for studying other introduced species and their population dynamics.

期刊论文 2024-10-01 DOI: 10.1002/1438-390X.12179 ISSN: 1438-3896

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.

期刊论文 2024-04-01 DOI: 10.1111/mpp.13450 ISSN: 1464-6722

Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research. This perspective aims to critically explore the different levers that can be turned to obtain functional and reliable myco-materials engineered from fungi. These levers include fungal species, encompassing their specific set of genetic information, as well as global environmental cues, encompassing aspects of nutrition, that can be used to coax end material properties toward a desired outcome via fungal adaptation.image

期刊论文 2024-03-01 DOI: 10.1002/gch2.202300140

Atrazine (ATR) is a widely used agricultural herbicide, and its accumulation in soil and water can cause various environmental health problems. ATR has neurotoxic effects on dopaminergic neurons, which can lead to a Parkinson's disease (PD)-like syndrome. Epigenetics regulates gene expression dynamically through DNA methylation, histone post-translational modification, microRNA (miRNA) interaction, and RNA methylation. MicroRNA (miRNA), representing one of the primary epigenetic mechanisms responsible for regulating gene expression, plays a crucial role in maintaining normal cellular function, while dysregulation of miRNA expression has been observed in PD. This study aims to investigate the regulatory mechanisms of miRNA in ATR exposure. The results show that ATR-exposure significantly upregulates the expression level of miR-217-5p. Both miR-217-5p overexpression and ATR exposure is able to trigger the autophagy process and apoptosis. Conversely, inhibiting the expression of miR-217-5p can reverse the levels of ATR-induced autophagy and apoptosis. Moreover, ATR causes damage to dopaminergic neurons, as indicated by the altered expression of tyrosine hydroxylase and alpha-synuclein. Taken together, these results suggest that ATR-induced autophagy can accelerate the progression of neurodegenerative diseases and that miR-217-5p is probably an important target involved in ATR-induced dopaminergic damage, shedding important light on the development of a novel strategy for treating neurodegenerative diseases.

期刊论文 2024-01-01 DOI: 10.1016/j.envpol.2023.122811 ISSN: 0269-7491

Microbes are a critical component of soil ecosystems, performing crucial functions in biogeochemical cycling, carbon sequestration, and plant health. However, it remains uncertain how their community structure, functioning, and resul-tant nutrient cycling, including net GHG fluxes, would respond to climate change at different scales. Here, we review global and regional climate change effects on soil microbial community structure and functioning, as well as the climate-microbe feedback and plant-microbe interactions. We also synthesize recent studies on climate change impacts on terrestrial nutrient cycles and GHG fluxes across different climate-sensitive ecosystems. It is generally assumed that climate change factors (e.g., elevated CO2 and temperature) will have varying impacts on the microbial community structure (e.g., fungi-to-bacteria ratio) and their contribution toward nutrient turnover, with potential interactions that may either enhance or mitigate each other's effects. Such climate change responses, however, are difficult to gen-eralize, even within an ecosystem, since they are subjected to not only a strong regional influence of current ambient environmental and edaphic conditions, historical exposure to fluctuations, and time horizon but also to methodolog-ical choices (e.g., network construction). Finally, the potential of chemical intrusions and emerging tools, such as ge-netically engineered plants and microbes, as mitigation strategies against global change impacts, particularly for agroecosystems, is presented. In a rapidly evolving field, this review identifies the knowledge gaps complicating assessments and predictions of microbial climate responses and hindering the development of effective mitigation strategies.

期刊论文 2023-07-15 DOI: 10.1016/j.scitotenv.2023.163412 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页