The fine-grained gassy soils are prevalent in coastal regions worldwide. The inadequate knownledge of their mechanics, leads to engineering geological issues such as seabed landslides, amid marine and offshore advancements. Through a series of triaxial tests combined with bender elements, this study investigated the stress-strain behavior of fine-grained gassy soil with varying initial gas contents and pore water pressures, along with the variations in the small-strain shear modulus during shearing, thereby facilitating a better understanding of gassy soils mechanics in situ exploration. Our findings show the gassy soils at initial pore water pressure of 150 kPa resemble saturated soils in the stress-strain behaviors, but differ in small-strain moduli. A distinctive inflection point at 5% strain signifies peak pore pressure and valley shear modulus, precedes strength and strain peaks. Additionally, there is an unique power relationship between the small-strain modulus and the secant shear modulus during shearing.
Gassy soil is prevalent in coastal regions, and the presence of gas bubbles can significantly alter the mechanical properties of soil, potentially leading to various marine engineering geological hazards. In this study, a series of triaxial tests were conducted on fine-grained gassy soils under different consolidation pressures (pc'), stress paths, and initial pore water pressures (uw0). These tests were also used to verify the applicability of a newly proposed constitutive model. According to the test results, the response to excess pore pressure and the stress-strain relationship of fine-grained gassy soils strongly depend on the initial pore water pressure (uw0), with the degree of variation being influenced by the consolidation pressure (pc') and stress path. As uw0 decreases, the undrained shear strength (cu) of fine-grained gassy soils gradually increases, and this is lower under the reduced triaxial compression (RTC) path compared to the conventional triaxial compression (CTC) path, which can be attributed to the destruction of the pore structure due to an increase in gas volume. The newly proposed model accurately predicts the pore pressure and stress-strain relationship of fine-grained gassy soils at low consolidation pressures (pc'), but it falls short in predicting the mechanical behavior during shear progression under high pc' or the RTC path. Although the model effectively predicts the excess pore pressure and deviator stress at the shear failure point (axial strain = 15%), further improvement is still required.
Earthquake-induced liquefaction is a prominent and impactful natural hazard responsible for substantial economic losses worldwide. Hence, engineers and researchers are currently interested in developing methods and techniques to mitigate this destructive phenomenon. Reducing the degree of saturation is a reliable method to improve the liquefaction resistance of sandy soils since it directly influences the pore pressure build-up during seismic action. This paper reviews the mechanisms and assessment of earthquake-induced liquefaction in sandy soils with various degrees of saturation, a crucial parameter for reducing the phenomenon triggering. In addition, it presents novel approaches that delve into interpreting cyclic behaviour with diverse degrees of saturation using stress-based and energy-based approaches. The experimental results compiled and discussed show that, effectively, reducing the degree of saturation holds promise as a viable strategy for enhancing soil liquefaction resistance and mitigating associated risks. Moreover, the interpretation of cyclic behaviour addressed in this paper offers valuable insights into the reliability of interpreting methods to quantify the liquefaction resistance under several degrees of saturation (that may be achieved by desaturation or induced partial saturation techniques), contributing to strategies for resilience against earthquake-induced damages.
Due to natural and anthropogenic disturbances, natural gas hydrates with morphologies of nodules and chunks dissociate and release massive free gas, creating large cavities within fine-grained marine sediments. However, it is still a challenge to quantify the impact of gas cavities on mechanical properties of cavitied fine-grained marine sediments as there is a lack of efforts focusing on the inner structure visualization. In this study, an oedometer test and X-ray computed tomography scans are jointly conducted on marine clayey silt with gas cavities, and the confined compressibility as well as the inner structure change under an undrained condition are explored, followed by development of a theoretical model depicting the void ratio change. The results show that vertical loading induces a void ratio reduction, and the reduced void ratio can fully recover after being unloaded. Although being fully recovered, unrecovered changes of the inner structure still remain after being unloaded. Examples include closed cracks in the lower matrix, new occurring cracks in the upper matrix, and the fragmented gas cavity. In addition, the void ratio linearly increases with the increasing inverse of normalized pore gas pressure, while the coefficient of the effective stress linearly decreases with the increasing inverse of normalized vertical loading stress. The proposed theoretical model captures the essential physics behind undrained confined deformation of fine-grained marine sediments with gas cavities when subjected to loading and unloading.