共检索到 2

High Arctic polar deserts cover 26% of the Arctic. Climate change is expected to increase cryoturbation in these polar deserts, including frost boils and diapirs. Diapirism-cryoturbic intrusion into the overlying horizon-creates subsurface nutrient patches with low biodegradability and is thought to regulate greenhouse gas emissions, including the potent nitrous oxide. Although nitrous oxide emissions have been observed in polar deserts at a rate comparable to vegetated tundra ecosystems, the underlying mechanism by which nitrous oxide is produced in these environments remains unclear. In this study, we investigated ammonia-oxidizing archaea, which were detected in a previous study, and used stable isotope techniques to characterize the pattern of nitrous oxide emissions from frost boils. Ammonia-oxidizing archaea would be tightly linked to nitrous oxide emissions under aerobic condition whereas low degradable diapiric nutrient would limit denitirification under wet conditions. We hypothesized that (1) diapirism (i.e. diapiric frost boil) would not primarily drive nitrous oxide emissions and therefore abundance of ammonia-oxidizing archaea would be linked to the increase in nitrous oxide emissions under dry conditions favouring nitrification, and (2) diapirism decreases nitrous oxide emissions relative to non-diapiric frost boil under wet conditions that favour denitrification because of the recalcitrant nature of diapiric organic carbon. We used soil samples collected from two High Arctic polar deserts (dolomite and granite) near Alexandra Fjord (78 degrees 51'N, 75 degrees 54'W), Ellesmere Island, Nunavut, Canada from July-august 2013. Ammonia-oxidizing archaea did not differ in abundance between diapiric and non-diapiric frost boils within the dolomitic desert; however, within the granitic desert amoA abundance was 22% higher in diapiric frost boils. In both deserts, the increased abundance of archaeal amoA genes was linked to increased nitrous oxide emissions under dry conditions. Under higher soil moisture conditions favouring denitrification, diapiric frost boils emit N2O with higher probability, but at a lower rate, than non-diapiric frost boils. For example, in the dolomitic desert, diaprism increased the probability of N2O emissions by 104% but decreased the LS mean value of the emission rate by 36%. Similarly, diapirism increased the emission probability by 26% but decreased the LS mean value by 68% within the granitic desert. Under wet conditions, site preference values suggested that fungal and bacterial denitrification were important nitrous oxide emission processes. Our study shows that diapirism is a key cryoturbation process for nitrous oxide emissions in polar deserts primarily through diapirism's alteration of emission probability and the magnitude of the emissions.

期刊论文 2020-11-01 DOI: 10.1016/j.soilbio.2020.108001 ISSN: 0038-0717

Differences in the summer insulative value of the zonal vegetation mat affect the depth of thaw along the Arctic bioclimate gradient. Toward the south, taller, denser plant canopies and thicker organic horizons counter the effects of warmer temperatures, so that there is little correspondence between active layer depths and summer air temperature. We examined the interactions between summer warmth, vegetation (biomass, Leaf Area Index, Normalized Difference Vegetation Index), soil (texture and pH), and thaw depths at 17 sites in three bioclimate subzones of the Arctic Slope 2 and Seward Peninsula, Alaska. Total plant biomass in subzones C, D, and E averaged 421 g m(-2), 503 g m(-2), and 1178 g m(-2) respectively. Soil organic horizons averaged 4 cm in subzone C, 8 cm in subzone D, and 14 cm in subzone E. The average late-August thaw depths in subzones C, D, and E were 44 cm, 55 cm, and 47 cm respectively. Non-acidic soils in equivalent climates generally have shorter-stature sedge-dominated canopies and many frost boils, and consequently have thicker active layers than acidic soils. The trends reported here are useful for palaeo-ecological reconstructions and predictions of future ecosystem changes in the Low Arctic. Climate change will not lead to uniform thickening of the active layer, and could lead to shallower active layers in some presently dry areas due to paludification. Copyright (C) 2003 John Wiley Sons, Ltd.

期刊论文 2003-04-01 DOI: 10.1002/ppp.452 ISSN: 1045-6740
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页