共检索到 3

Reutilising waste argillaceous gangue (AG) in road engineering is crucial to reducing its environmental pollution. To effectively control settlement and long-term performance of subgrade filled with AG, the effects of humidification and loading on the particle crushing evolution of AG were investigated. The effects of dry-wet cycles, compaction work, and initial coarse grain content (CGC) on the breakage characteristics were evaluated. The relationship among fractal dimension D and compaction work, initial CGC, and breakage index Bg was established. The results show that the initial CGC and compactness are essential factors affecting the breakage characteristics of AG. It is recommended that the CGC be controlled at 50% when AG is used as subgrade filler. The fractal dimension increases logarithmically with the increase of compaction work and decreases linearly with the rise of CGC. Fractal dimensions D and Bg can effectively evaluate the breaking process of AG and the gradation after compaction.

期刊论文 2025-02-01 DOI: 10.1080/14680629.2024.2356798 ISSN: 1468-0629

To investigate the microscopic pore evolution characteristics of Zhanjiang Formation structural clay during the disturbance process, unconfined compressive strength tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were conducted on disturbed samples subjected to various disturbance conditions after vibrational disturbance. Based on the evolution characteristics of the microstructure, the microscopic pore characteristics of the disturbance damage of Zhanjiang Formation structural clay were examined. The results indicate the following. (1) The porosity in three-dimensional visualization images of the microstructure reconstructed by ArcGIS 10.1 increases with the disturbance degree, showing a linear growth trend. (2) The correlation analysis between macroscopic mechanics and microscopic pores shows that the unconfined compressive strength of Zhanjiang Formation structural clay is mainly affected by its porosity, with a significant linear negative correlation. Based on this, a reasonable regression model between the microscopic porosity and the unconfined compressive strength has been established. The model can rapidly estimate the unconfined compressive strength from porosity data, facilitating the assessment engineering properties of the soil. (3) The microscopic pore structure of Zhanjiang Formation structural clay exhibits prominent Menger fractal characteristics. The three-dimensional pore fractal dimension has a certain positive correlation with the disturbance degree, and can be utilized to characterize the pore structure and complexity, serving as a significant parameter for the quantitative evaluation of the pore structure characteristics of Zhanjiang Formation structural clay. Consequently, the complexity of the pore structure of the engineering soil can be evaluated by the pore fractal dimension. (4) The impact of disturbance on soil is primarily manifested in the structural changes in secondary clay minerals, transitioning from a relatively intact to a fully adjusted state. During this process, interparticle pores continuously increase, pore structure complexity increases, and interparticle cementation weakens, resulting in the continuous degradation of unconfined compressive strength. This study contributes to a deeper understanding of the disturbance damage characteristics of Zhanjiang Formation structured clays from a microscopic pore perspective, providing a theoretical basis for the engineering construction and operational maintenance in regions with Zhanjiang Formation structural clay.

期刊论文 2024-11-01 DOI: 10.3390/app142210193

In regions with sandy soft soil strata, the subway foundation commonly undergoes freeze-thaw cycles during construction. This study focuses on analyzing the microstructural and fractal characteristics of frozen-thawed sandy soft soil to improve our understanding of its strength behavior and stability. Pore size distribution curves before and after freeze-thaw cycles were examined using nuclear magnetic resonance technology. Additionally, fractal theory was applied to illustrate the soil's fractal properties. The strength properties of frozen remolded clay under varying freezing temperatures and sand contents were investigated through uniaxial compression tests, indicating that soil strength is significantly influenced by fractal dimensions. The findings suggest that lower freezing temperatures lead to a more dispersed soil skeleton, resulting in a higher fractal dimension for the frozen-thawed soil. Likewise, an increase in sand content enlarges the soil pores and the fractal dimension of the frozen-thawed soil. Furthermore, an increase in fractal dimension caused by freezing temperatures results in increased soil strength, while an increase in fractal dimension due to changes in sand content leads to a decrease in soil strength.

期刊论文 2024-07-01 DOI: 10.3390/fractalfract8070393
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页