共检索到 2

Calcareous sand has been widely used as a construction material for offshore projects; however, the problem of foundation settlement caused by particle crushing cannot be ignored. Although many methods for reinforcing calcareous sands have been proposed, they are difficult to apply on-site. In this study, a permeable polyurethane polymer adhesive (PPA) was used to reinforce calcareous sands, and its mechanical properties after reinforcement were investigated through compression creep, direct shear, and triaxial shear tests. The reinforcement mechanism was analyzed using optical microscopy, CT tomography, and mercury intrusion porosimetry. The experimental results indicate that there is a critical time during the compression creep process. Once the critical time is surpassed, creep accelerates again, causing failure of the traditional Burgers and Murayama models. The direct shear strength of the fiber- and geogrid-reinforced calcareous sand reinforced by PPA was approximately nine times greater than that without PPA. The influence of normal stress was not significant when the moisture content was less than 10%, but when the moisture content was more than 10%, the shear strength increased with an increase in vertical normal stress. Strain-softening features can be observed in triaxial shear tests under conditions of low confining pressure, and the relationship between the deviatoric stress and strain can be described using the Duncan-Chang model before softening occurs. The moisture content also has a significant influence on the peak strength and cohesive force but has little influence on the internal friction angle and Poisson's ratio. This influence is caused by the different PPA structures among the particles. The higher the moisture content, the greater the number of pores left after grouting PPA.

期刊论文 2024-11-01 DOI: 10.3390/ma17215277

The existing earthquake damage investigations indicate that the lateral spreading of site is more likely to occur in inclined liquefiable site under earthquake, therefore the way of foundation reinforcement is often adopted to reduce the lateral spreading phenomenon of inclined liquefiable site. In order to study the reinforcement principle of inclined liquefiable site by the two reinforcement methods of concrete pile and gravel pile, based on the verified numerical model of free field model, the model of concrete pile reinforcement and crushed rock pile reinforcement was established, the dynamic response and reinforcement effect of two different reinforcement methods in inclined liquefiable site were analyzed, and the effects of buried depth and pile diameter on the earthquake dynamic response and the effects of different reinforcement models are discussed. It is found that the concrete pile has a better reinforcement effect on inclined liquefiable site than gravel pile under the same buried depth and pile diameter. When the concrete pile is adopted to reinforce the inclined liquefiable site, the reinforcement effect is better when the concrete pile are embedded in dense sand layer at a certain depth; When adopting the gravel pile to reinforce inclined liquefiable sites, the effect is better when only clay and loose sand layer are reinforced, moreover, increasing the diameter of gravel piles greatly improves the reinforcement effect of inclined liquefiable sites. The pile group reinforcement model can greatly reduce the lateral displacement of site soil compared with the single pile reinforcement model.

期刊论文 2024-01-01 DOI: 10.1016/j.soildyn.2023.108342 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页