共检索到 2

Limestone calcined clay cement (LC3) is now about to become a new type of cement. Replacing a considerable part of cement with calcined clay makes the new cement more sustainable than ordinary Portland cement. In this investigation, locally available non-kaolinite clayey soil is studied in two stages. Firstly, the calcined temperature, the replacement level of calcined clay, and the ratio of the calcined clay to limestone were optimized. The results were 750 degrees C, 40%, and 3:1, respectively. The optimized mixtures were reinforced with recycled polyethylene terephthalate (PET) and polypropylene (PP) fibers at ratios of 0%, 0.5%, 1%, and 1.5% of the binder's weight. Flowability was measured for the fresh mortar. Mechanical properties such as compressive strength, flexural strength, and splitting tensile strength were studied. Durability properties like fire resistance, water absorption, water sorptivity, and porosity were examined. The results show that 1.5% of PET fiber and 1% of PP fiber showed the best results in terms of mechanical and durability properties. Flexural strength increased from 6.35 to 8.45 MPa and to 7.52 MPa when PP and PET fiber were increased from 0 to 1 and 1.5% respectively. Similarly, tensile strength increased from 3.78 to 4.25 MPa and to 5.25 MPa when PP and PET fiber were increased from 0 to 1.5% and 1%, respectively. However, increasing fibers consistently decreased flowability. This investigation demonstrates the potential of using the locally available non-kaolinite clayey soil to be used as pozzolanic material and to produce LC3. Consequently, LC3 shows the potential to use as a structural material.

期刊论文 2025-03-01 DOI: 10.1007/s41062-025-01905-2 ISSN: 2364-4176

One of the major negative environmental implications of economic growth and the advancement of information technology is the large quantity of electronic waste dumped in landfills. Cathode ray tubes (CRTs) from outdated televisions and computer monitors are a significant source of electrical waste. The CRT funnel primarily consists of silica, significant alkalis (Na2O-K2O), and heavy metals like barium-strontium, along with a substantial lead (Pb) content that may contaminate the soil. Owing to its heavy metal content, CRT is considered hazardous waste, and regulations require its glass to be recycled or repurposed instead of landfill disposal. The low pozzolanic activity of CRT silica suggests that its high content, when paired with an optimized particle size and specific curing conditions, can enhance the mechanical properties of cement-based products. Hydrothermal treatment has been found to speed up both the hydration of ordinary Portland cement (OPC) and the pozzolanic reactions. Since the main objective was to safely recycle large amounts of CRT, three mixes were proposed with 10%, 20%, and 30% OPC + 90%, 80%, and 70% CRT, respectively, and the effect of hydrothermal curing conditions on mechanical properties and durability of these blends was investigated. CRT-70, a blend containing 70% CRT glass waste, showed enhanced strength due to the formation of zeolitic phases and calcium silicate hydrate (CSH). These phases also provided CRT-70 with notable fire resistance, ensuring its structural stability under elevated temperatures. These results demonstrate the possibility of production of precast building products via high-volume recycling of hazardous CRT waste.

期刊论文 2024-12-01 DOI: 10.1002/tqem.22346 ISSN: 1088-1913
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页