This study investigates the underlying causes of pier displacement and cracking in a highway link bridge. The initial geological assessment ruled out slope instability as a contributing factor to pier movement. Subsequently, a comprehensive analysis, integrating in situ soil investigation and finite element modeling, was conducted to evaluate the influence of additional fill loads on the piers. The findings reveal that the additional filled soil loads were the primary driver of pier tilting and lateral displacement, leading to a significant risk of cracking, particularly in the mid- of the piers. Following the removal of the filled soil, visual inspection of the piers confirmed the development of circumferential cracks on the columns of Pier 7, with the crack distribution closely aligning with the high-risk zones predicted by the finite element analysis. To address the observed damage and residual displacement, a reinforcement strategy combining column strengthening and alignment correction was proposed and validated through load-bearing capacity calculations. This study not only provides a scientific basis for analyzing the causes of accidents and bridge reinforcement but, more importantly, it provides a systematic method for analyzing the impact of additional filled soil loads on bridge piers, offering guidance for accident analysis and risk assessment in similar engineering projects.