共检索到 4

Soil liquefaction is a major contributor to earthquake damage. Evaluating the potential for liquefaction by conventional experimental or empirical methods is both time-intensive and laborious. Utilizing a machine learning model capable of precisely forecasting liquefaction potential might diminish the time, effort, and expenses involved. This research introduces an innovative predictive model created in three phases. Initially, correlation analysis determines essential elements affecting liquefaction. Secondly, predictions are produced using Convolutional Neural Networks (CNN) and Deep Belief Networks (DBN), verified by K-fold cross-validation to guarantee resilience. Third, Ant Colony Optimization (ACO) improves outcomes by increasing convergence efficiency and circumventing local minima. The suggested EC + ACO model substantially surpassed leading approaches, such as SVM-GWO, RF-GWO, and Ensemble Classifier-GA, attaining a very low False Negative Rate (FNR) of 2.00 % when trained on 90 % of the data. A thorough performance evaluation shown that the model achieved a cost value of 1.133 % by the 40th iteration, exceeding the performance of other models such SVMGWO (1.412 %), RF-GWO (1.305 %), and Biogeography Optimized-Based ANFIS (1.7439 %). The model exhibited significant improvements in convergence behavior, with a steady decline in cost values, especially between the 20th and 50th iterations. Additional validation using empirical data from the Tohoku-oki, Great East Japan earthquake substantiated the EC + ACO model's enhanced accuracy and dependability in mirroring observed results. These findings underscore the model's resilience and efficacy, providing a dependable method for forecasting soil liquefaction and mitigating its seismic effects.

期刊论文 2025-05-21 DOI: 10.1016/j.enggeo.2025.108036 ISSN: 0013-7952

The Narrow-Angle Cameras (NACs) onboard the Lunar Reconnaissance Orbiter Camera (LROC) capture lunar images that play a crucial role in current lunar exploration missions. Among these images, those of the Moon's permanently shadowed regions (PSRs) are highly noisy, obscuring the lunar topographic features within these areas. While significant advancements have been made in denoising techniques based on deep learning, the direct acquisition of paired clean and noisy images from the PSRs of the Moon is costly, making dataset acquisition expensive and hindering network training. To address this issue, we employ a physical noise model based on the imaging principles of the LROC NACs to generate noisy pairs of images for the Moon's PSRs, simulating realistic lunar imagery. Furthermore, inspired by the ideas of full-scale skip connections and self-attention models (Transformers), we propose a denoising method based on deep information convolutional neural networks. Using a dataset synthesized through the physical noise model, we conduct a comparative analysis between the proposed method and existing state-of-the-art denoising approaches. The experimental results demonstrate that the proposed method can effectively recover topographic features obscured by noise, achieving the highest quantitative metrics and superior visual results.

期刊论文 2025-03-01 DOI: 10.3390/app15052358

The permanently shadowed regions (PSRs) of the Moon are located at the Moon's polar regions that are permanently in shadow due to their inability to receive direct sunlight. Images of these areas are usually dark and significantly affected by noise, obscuring the lunar terrain information. Although image denoising has made considerable progress, there is still limited study on images denoising of lunar PSRs. The main challenge lies in the fact that images of PSRs are characterized by low contrast, complex noise type, and uneven illumination. The existing deep learning-based methods exhibit poor physical interpretability and cannot effectively remove complex noise. Therefore, this study introduces a novel denoising method by using combination of physical noise models and deep Learning. Specially, the physical noise model is used to simulate the noise of lunar PSRs according to the imaging principles of the lunar reconnaissance orbiter camera narrow angle camera. The improved deep learning model, which incorporates full-scale skip connections and Transformer is used to denoise the images. The proposed method is tested in 297 PRSs images with latitudes below -70 degrees and compared with state-of-the-art methods. Experimental results demonstrate that the proposed method outperforms existing methods in restoring terrain details and provides better quantitative and visual outcomes. This approach has the potential to improve the clarity of lunar PSR images and support future lunar exploration.

期刊论文 2025-01-01 DOI: 10.1109/JSTARS.2025.3554490 ISSN: 1939-1404

This paper proposes a novel data-driven framework for scour detection around offshore wind turbines (OWTs), where damage features are derived from wind and wave-induced acceleration signals collected along the tower. A numerical model of the NREL 5 MW wind turbine, which considers aerodynamic and hydrodynamic loading with soil-structure interaction (SSI) and servodynamics, is developed. The model is used to simulate the acceleration responses along the tower for a healthy structure, and a structure affected by progressive scour. A data segmentation process is initially performed on the collected data, which is followed by a feature selection scheme based on the analysis-of-variance (ANOVA) algorithm, to eliminate irrelevant characteristics from the time domain feature set of responses. The proposed framework consists of two main components: (a) offline training, and (b) real-time classification. The acceleration responses collected from the healthy structure and the structure subjected to three different damage scenarios (different scour depths) and under various load conditions, are used in the offline training mode. The selected feature vector from the feature extraction process is used as input to a Naive Bayes classifier (NBC) algorithm to train the model. In the real-time classification, a prediction of the scour depth affecting the structure is performed using a new dataset simulated from unseen load cases and scour conditions of the OWT. The results show that the model trained in the offline stage can predict the scour depth in the real-time monitoring stage with performance measures over approximately 94%.

期刊论文 2024-05-01 DOI: 10.1016/j.marstruc.2023.103565 ISSN: 0951-8339
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页