共检索到 3

Accurate prediction of landslide movement is essential for effective disaster prevention and control. However, current studies on probabilistic large deformation analysis of landslides assume transverse anisotropy of soil, overlooking the impact of the soil fabric and depositional orientation on the post-failure behavior. While the specific effects of stratigraphic dips and nonstationary soil orientations on slope stability are frequently analyzed, these effects on the post-failure behavior of slopes have not been thoroughly explored. This study proposes a new probabilistic framework for simulating landslides and quantifying hazard zones, incorporating complex stratigraphic dips and two typical nonstationary soil orientations. The new method integrates nonstationary random field (RF) theory with the rotation of spatial autocorrelation structure. It derives formulas for calculating the thickness and depth of the soil layer at various locations, considering different stratigraphic dips and nonstationary orientations. This approach enables the simulation of parameter distributions for bedding and inverse soils with both vertical and stratigraphic nonstationarity. The generalized interpolation material point method (GIMP) is then used to simulate the post-failure behavior of slopes. The findings indicate that neglecting the spatial variability of soil parameters leads to an underestimation of the influence zone of landslide. Additionally, the nonstationary characteristics of soil parameters and stratigraphic dips can affect the failure mechanisms of slopes and the exceedance probabilities of runout and influence distances. The proposed method enhances the accuracy of predicting runout and influence distances, serving as a novel valuable tool for disaster management and mitigation.

期刊论文 2025-01-01 DOI: 10.1016/j.compgeo.2024.106815 ISSN: 0266-352X

To ensure the seismic safety of important buildings and infrastructure facilities in seismically active areas, it is necessary that, in addition to the various ground motion parameters, the seismic hazard is also characterized in terms of many other destructive natural effects of earthquakes like soil liquefaction and permanent fault displacement for example. The probabilistic seismic hazard analysis methodology can in principle be applied to quantify any of the destructive effects of the earthquakes in a region, provided a formulation has been developed to compute the probability with which a specified level of that effect can be exceeded at a site of interest due to given earthquake magnitude and location. Several investigators have developed necessary relationships and methodologies to estimate this probability for the permanent fault displacement, which may be a potential and primary cause of damage to long structures like bridges, tunnels, pipelines, dams and buried structures, if an active fault happens to cross or pass by such a structure. Based on a comprehensive literature survey and critical analysis of the results obtained for various possible alternatives, we have finalized a methodology for probabilistic fault displacement hazard analysis suitable for a 257 km long strand of the main boundary thrust (MBT) in the Garhwal-Kumaon Himalaya. Formulations are proposed for estimation of both the on-fault principal displacement and the off-fault distributed displacement, which can also be applied to any other thrust fault in any other segment of the Himalaya. The application of the proposed methodology to obtain the on-fault displacement estimates for a site at the midpoint of the selected strand of the MBT is found to provide physically realistic displacement values for very long return periods of upto 100,000 years. The off-fault displacements are found to decrease very fast with distance from the site on MBT and become practically insignificant at a distance of only two km.

期刊论文 2024-09-01 DOI: 10.1007/s12572-023-00359-y ISSN: 0975-0770

Tunnels are a vital component of urban infrastructure that must be robust against seismic hazards. Given the randomness of earthquake occurrence, the seismic response of tunnel structures mut be studied by stochastic analysis methods. To this end, this study proposes a probability density evolution method (PDEM)-based framework to investigate the seismic performance of a circular tunnel under stochastic earthquake excitation. First, a suite of nonstationary earthquake motions compatible with the seismic design code was derived using a stochastic earthquake model. Then, a series of nonlinear dynamic numerical simulations were conducted for a typical circular tunnel that considers the soil-structure interaction. Finally, using the tunnel inclination angle as the performance index, the probability density function of the structural response of the tunnel was solved using the PDEM to obtain the corresponding exceedance probabilities of the tunnel under various damage states. The results show that the PDEM-based framework can be applied to evaluate the seismic performance of circular tunnels and could serve as a reference on the seismic fragility of tunnels and underground structures.

期刊论文 2024-04-02 DOI: 10.1080/17499518.2023.2257171 ISSN: 1749-9518
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页