Floods and erosion are natural hazards that present a substantial risks to both human and ecological systems, particularly in coastal regions. Flooding occurs when water inundates typically dry areas, causing widespread damage, while erosion gradually depletes soil and rock through processes driven by water and wind. This study proposes an innovative approach that integrates Deep Neural Decision Forest (DeepNDF), Feedforward Neural Network (FNN), autoencoders, and Bidirectional Recurrent Neural Networks (Bi-RNN) models for flood prediction, enhanced through transfer learning for erosion mapping in coastal environments. Utilizing multi-source datasets from the United States Geological Survey (USGS), Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Algerian Institute of Cartography, and Sentinel-2 imagery, the key conditioning factors using Geographic Information System (GIS) were generated. The conditioning factors included elevation, slope, flow direction, curvature, distance from rivers, distance from roads, hillshade, topographic wetness index (TWI), stream power index (SPI), geology, and land use/land cover (LULC), as well as rainfall. To ensure the modeling reliability, the performance was rigorously evaluated using multiple statistical metrics, including the Area Under the Curve-Receiver Operating Characteristic (AUC-ROC), Precision, Recall, and F1 Score. The DeepNDF model achieved the highest performance for flood prediction with an AUC-ROC of 0.97, Precision of 0.93, Recall of 0.92, and an F1 Score of 0.925, while the transfer learning approach significantly improved erosion prediction, reaching an AUC-ROC of 0.92, Precision of 0.90, Recall of 0.92, and an F1 Score of 0.91. The analysis indicated that flood risks predominantly affected rangeland (18.68%) and bare ground (20.48%), while cropland was found to face the highest erosion risk, affecting approximately 3,471 km2. This research advances predictive modelling in hydrology and environmental science, providing valuable insights for disaster mitigation and resilience planning strategies in coastal areas.
Introduction Soil mass instability on steep slopes presents significant challenges for erosion control and soil stabilization, requiring the development of biodegradable geotextile alternatives. This study aimed to evaluate the resistance of geotextiles produced from Syagrus coronata (Mart.) Becc. fibers, treated with waterproofing resin, subjected to the effects of exposure to degradation under environmental conditions.Methods Geotextile samples were exposed to solar radiation, rain, wind, and soil microorganisms; mechanical behavior was assessed via tensile strength and static puncture tests, supplemented by scanning electron microscopy. Statistical analyses, including ANOVA-RM and regression models, were applied to discern the effects of exposure time and resin treatments on the fibers' performance.Results and discussion Key findings indicate that a single-layer resin treatment significantly prolongs the mechanical viability of the fibers over 120 days, maintaining higher ultimate tensile strength compared to untreated or double-layer-treated fibers. Although double-layer resin provided an initially higher tensile resistance, it accelerated structural failures beyond 90 days, while untreated fibers were nonviable after 60 days. These results highlight a trade-off between stiffness and durability, evidencing that a single-layer resin application delivers an optimal balance of mechanical resilience and flexibility. These findings suggest that a single-layer resin treatment provides a balance between durability and mechanical performance, making it a suitable choice for eco-friendly geotextile applications. Properly treated Syagrus coronata fibers emerge as an economical and sustainable alternative for geotextiles, offering greater durability and contributing to improving slope stabilization and erosion control in environmental conditions of recovery and revegetation of degraded areas.
Desertification is a global environmental issue that significantly threatens ecosystem stability and vegetation restoration in arid regions. This study proposes a multiple treatment strategy combining Artemisia sphaerocephala Krasch. gum (ASKG) with Enzyme-Induced Carbonate Precipitation (EICP) to enhance wind erosion control and seed germination. The effects of this approach were evaluated through field experiments. The results showed that single EICP treatment improved soil water retention and surface strength. However, high-concentration EICP treatment (>= 0.2 mol/L Cementation Solution, CS) induced salt stress, which suppressed plant survival. In contrast, when low-concentration EICP (0.1 mol/L CS) was combined with ASKG, a stable crust formed, improving surface strength and crust thickness, while preventing damage to the crust during early plant growth. The addition of 1.0 g/L ASKG reduced wind erosion depth by 67%, increased average moisture content to 7.4%, and promoted better seed germination, showing strong ecological compatibility and long-term stability. Furthermore, the second EICP treatment optimized the soil pore structure by adding CaCO3 precipitates, which increased average moisture content to 10.6% and increased surface strength by 114.5%. Microstructural analysis revealed that ASKG formed film or mesh structure around CaCO3 crystals, enhancing soil wind erosion resistance and water retention. Overall, the findings suggest that the multiple treatment strategy of EICP combined with ASKG successfully overcomes the ecological limitations of traditional high-concentration EICP, providing a sustainable solution for wind erosion control and vegetation restoration in desert areas.
The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization. This contribution is one of the first studies assessing the feasibility of using inulin to stabilize soil and mitigate erosion. Inulin has several agricultural waste sources, making it a sustainable alternative to traditional additives. Soil samples susceptible to wind erosion were collected from a dust-prone area in southwest Iran and treated with inulin at 0%, 0.5%, 1%, and 2% by weight. Their mechanical strength was evaluated using unconfined compressive strength tests and a penetrometer. In addition, wind tunnel tests (at 16 m/s) were performed to investigate inulin's wind erosion mitigation potential. The durability of treated samples was evaluated after ten wetting-drying cycles to assess the effect of environmental stressors. The results indicated a 40-fold increase in the unconfined compressive strength (up to 8 MPa) of the samples treated with 2% inulin and only 0.22% weight loss after ten wetting-drying cycles. SEM images revealed the formation of biopolymer-induced particle-to-particle bonds. Moreover, Raman spectroscopy indicated molecular (hydrogen) bonding of the biopolymer hydrogel-soil particles facilitated by the hydroxyl groups of inulin. The deterioration in stiffness and strength of treated samples was less noticeable after 3rd dry-wet cycle, indicating the durability of the samples. The durability of samples against wet-dry cycles was attributed to molecular bonding of soil-biopolymer hydrogel, as revealed by FTIR analysis.
Soil erosion is a common phenomenon which causes lots of geological and engineering disasters. Clayey soil erosion control is a hot research topic and a challenging issue for its low permeability and lack of effective infiltration of treatment solutions. In this study, a coupling microbially induced calcium carbonate precipitation (MICP)-sand column method was proposed as a promising and sustainable technique to mitigate surface clayey soil erosion with adjustable treatment depth. Seven groups of soil samples were prepared, including pure soil, MICP-treated soil, and MICP-sand column method-treated soil. A series of disintegration tests and penetration tests were conducted to investigate the method feasibility and adjusting mechanism of erosion mitigation with varying sand column heights and diameters. Compared to pure soil sample, sample treated by MICP-sand column (6 cm-height and 3 cm-diameter) method could reach a maximum reduction of 50 % in ultimate disintegration rate and a 30 % increase in the highest penetration resistance. The sample has a 7.9 cm effective treatment depth, which is 5.3 times of the MICP-treated sample. The mechanism of erosion mitigation can be attributed to that the sand column serves as a favorable path for the bacteria suspension and cementation solution in low-permeabilityclayey soil and improves the effective depth of MICP treatment. Adjusting the height and diameter of sand column can change the calcium carbonate distribution, especially at the locations near the surface and around the sand column. In this study, the optimal height and diameter are 6 cm and 3 cm, respectively, and finally form a U-shape three-layer structure. The structure significantly increases the proportion of the hard crust layer and weak-cemented layer with high hydro-mechanical properties. In conclusion, the coupling MICP-sand column method with reasonable height and diameter of sand column shows the ability to control surface erosion of soil and has better long-term mitigation performance.
Rainfall-induced soil erosion is a significant environmental issue that can lead to soil degradation and loss of vegetation. The estimated global annual loss increased by 2.5% over 11 years, from 35 billion tons in 2001 to 35.9 billion tons in 2012, mainly due to spatial changes. Indonesia is predicted to be among the largest and most intensively eroded regions among countries with higher soil erosion, regarded as hot-spots higher than 20 Mg yr-1 ha-1. Due to climate change, natural rainfall patterns in the tropical regions have been subject to change, with a lower number of rainy days and increased intensity of precipitation. Such changes trigger more soil erosion due to heavier rainfall kicking up dried soil particles that are exposed in the bare embankments. Unfortunately, there is no prevention available in developing countries due to the lack of availability and high prices of mitigation techniques such as terraces and covering areas with geotextiles or blankets. Erosion control blankets (ECBs) have emerged as a potential solution to mitigate soil erosion. This research article aims to evaluate the effectiveness of sugar-palm-fiber-based ECB in reducing soil erosion caused by natural rainfall. The study investigates the effectiveness of sugar-palm-based ECB in protecting against erosion at the designated embankment. During the three months of typical rainy seasons (February to April 2023), total eroded mass (kg) was collected and measured from two adjacent microplots (10 m2 each), one covered with ECB and the other one left as uncovered soil (bare soil). The results indicate that eroded mass is proportional to rainfall, with coefficients of 0.4 and 0.04 for bare soil and ECB-covered embankments, respectively. The total soil loss recorded during the monitoring period was 154.6 kg and 16.7 kg for bare and ECB-covered soil, respectively. The significantly high efficiency of the up to 90% reduction in soil losses was achieved by covering the slope with sugar-palm-fiber-based ECB. The reason for this may be attributed to the intrinsic surface properties of sugar palm fiber ropes and the soil characteristics of the plot area. Sugar palm (Arenga pinnata) fiber has higher lignocellulosic contents that produce a perfect combination of strong mechanical properties (higher tensile strength and young modulus) and a higher resistance to weathering processes. Although the cost of production of handmade sugar-palm-fiber-based ECB is now as high as 4 EUR, further reductions in cost production can be achieved by introducing machinery. Compared to typical ECBs which have smaller openings, sugar-palm-based ECB has larger openings that allow for vegetation to grow and provide it with a lower density. As such, we recommend improvements in the quality of palm-fiber-based ECB via the introduction of further automation in the production process, so that the price can be reduced in line with other commercially available natural fibers such as jute and coir.